-
对基于半导体光放大器(SOA)中非线性偏振旋转效应(NPR)效应的单一光缓存环多数据包的全光时隙交换(TSI)处理能力进行了理论和实验研究. 在使用归纳法导出单一缓存环实现多数据包全光时隙(TSI)必要条件的基础上,针对各种全光TSI操作要求得出了相应光数据包的调度方案. 在实验上,以基于SOA中NPR效应的单一光缓存环实验系统,开展了多数据包全光TSI操作的实验研究. 根据上述光数据包理论调度方案进行相应系统参数设定,进行了速率为10 Gb/s的3个和4个数据包的全光TSI实验. 实验结果与理论预期相符合. 研究成果为减少昂贵SOA元件的用量、简化基于光缓存环全光TSI系统的结构提供了可靠依据,对推进全光TSI技术的发展具有重要意义.Based on nonlinear polarization rotation (NPR) in semiconductor optical amplifier (SOA), a single optical buffer loop theoretically and experimentally demonstrates its switch capability to realize all-optical time slot interchange (TSI) on multiple optical packets (MOPs). Firstly, a series of prerequisites is theoretically deduced with a single optical buffer loop performing all-optical TSI on MOPs. And the corresponding equations which experimental parameters should satisfy are derived from these prerequisites for different cases of all-optical TSI. Accounting to the theoretical results, a single optical buffer loop based on NPR in SOA experimentally realizes all-optical TSI on three packets and four packets at data rate of 10 Gb/s. Experimental results are in accordance with those expected theoretically. These results will be very helpful to make all-optical TSI system more compact and more highly efficient, and have less expensive elements such as SOA, and also significant for developing the all-optical TSI technology.
-
Keywords:
- all-optical time slot interchange /
- all-optical buffer /
- semiconductor optical amplifier /
- nonlinear polarization rotation
[1] Huei Y C, Keng P H, Krivulin N 2010 J. High Speed Netw. 3 129
[2] Bonk R V P, Hillerkuss D, Freude W, et al. 2011 J. Opt. Commun. Netw. 3 206
[3] Thompson R A, Giordano P P 1987 J. Lightwave Technol. 5 154
[4] Yao J, Barnsley P, Walker N, O’Mahony M 1993 Electron. Lett. 29 1053
[5] Feng Z, Sheng X Z, Wu C Q, Li Z Y, Mao Y Y 2012 Chin. Phys. Lett. 29 084203
[6] Sheng X Z, Feng Z, Li B 2013 Appl. Opt. 12 2917
[7] Shao Y F, Zhang J W, Fang W L, Huang B, Chi N 2010 IEEE Commun. Mag. 48 146
[8] Cardakli M C, Gurkan D 2002 IEEE Photon. Technol. Lett. 14 200
[9] Takahashi R, Nakahara T, Takenouchi H, Suzuki H 2004 IEEE Photon. Technol. Lett. 16 692
[10] Calabretta N, Liu Y, Huijskens F M, et al. 2004 J. Lightwave Technol. 22 372
[11] Dorren H J S, Lenstra D, Liu Y, Hill M T, Khoe G D 2003 IEEE J. Quant. Electron. 39 141
[12] Zeng C, Cui Y 2013 Opt. Commun. 294 372
[13] Cheng M, Wu C Q, Hiltunen J, Wang Y P, Wang Q, Myllylä R 2009 IEEE Photon. Technol. Lett. 21 1885
[14] Wang W R, Yu J L, Han B C, Guo J Z, Luo J, Wang J, Liu Y, Yang E Z 2012 Acta Phys. Sin. 61 084214 (in Chinese) [王文睿, 于晋龙, 韩丙辰, 郭精忠, 罗俊, 王菊, 刘毅, 杨恩泽 2012 61 084214]
[15] Zuo L, Yang A Y, Zhou D W, Sun Y N 2012 Acta Phys. Sin. 61 054211 (in Chinese) [左林, 杨爱英, 周大伟, 孙雨南 2012 61 054211]
-
[1] Huei Y C, Keng P H, Krivulin N 2010 J. High Speed Netw. 3 129
[2] Bonk R V P, Hillerkuss D, Freude W, et al. 2011 J. Opt. Commun. Netw. 3 206
[3] Thompson R A, Giordano P P 1987 J. Lightwave Technol. 5 154
[4] Yao J, Barnsley P, Walker N, O’Mahony M 1993 Electron. Lett. 29 1053
[5] Feng Z, Sheng X Z, Wu C Q, Li Z Y, Mao Y Y 2012 Chin. Phys. Lett. 29 084203
[6] Sheng X Z, Feng Z, Li B 2013 Appl. Opt. 12 2917
[7] Shao Y F, Zhang J W, Fang W L, Huang B, Chi N 2010 IEEE Commun. Mag. 48 146
[8] Cardakli M C, Gurkan D 2002 IEEE Photon. Technol. Lett. 14 200
[9] Takahashi R, Nakahara T, Takenouchi H, Suzuki H 2004 IEEE Photon. Technol. Lett. 16 692
[10] Calabretta N, Liu Y, Huijskens F M, et al. 2004 J. Lightwave Technol. 22 372
[11] Dorren H J S, Lenstra D, Liu Y, Hill M T, Khoe G D 2003 IEEE J. Quant. Electron. 39 141
[12] Zeng C, Cui Y 2013 Opt. Commun. 294 372
[13] Cheng M, Wu C Q, Hiltunen J, Wang Y P, Wang Q, Myllylä R 2009 IEEE Photon. Technol. Lett. 21 1885
[14] Wang W R, Yu J L, Han B C, Guo J Z, Luo J, Wang J, Liu Y, Yang E Z 2012 Acta Phys. Sin. 61 084214 (in Chinese) [王文睿, 于晋龙, 韩丙辰, 郭精忠, 罗俊, 王菊, 刘毅, 杨恩泽 2012 61 084214]
[15] Zuo L, Yang A Y, Zhou D W, Sun Y N 2012 Acta Phys. Sin. 61 054211 (in Chinese) [左林, 杨爱英, 周大伟, 孙雨南 2012 61 054211]
计量
- 文章访问数: 5739
- PDF下载量: 264
- 被引次数: 0