搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

OH+离子14个Λ-S态和27个Ω态光谱性质的理论研究

邢伟 李胜周 张昉 孙金锋 李文涛 朱遵略

引用本文:
Citation:

OH+离子14个Λ-S态和27个Ω态光谱性质的理论研究

邢伟, 李胜周, 张昉, 孙金锋, 李文涛, 朱遵略

Theoretical investigation on spectroscopic characteristics of 14 Λ-S and 27 Ω states of OH+ cation

Xing Wei, Li Sheng-Zhou, Zhang Fang, Sun Jin-Feng, Li Wen-Tao, Zhu Zun-Lüe
cstr: 32037.14.aps.73.20241301
PDF
HTML
导出引用
  • 在选择合适的活性空间和基组、考虑各种物理效应(标量相对论效应、核–价电子关联效应、完备基组极限和自旋–轨道耦合效应)的基础上, 本文利用优化的icMRCI+Q方法获得了X3Σ/a1Δ/b1Σ+/A3Π/c1Π(OH+)←X2Π(OH)精确的电离能、OH+离子14个Λ-S态和相应的27个Ω态势能曲线. 利用全电子icMRCI/cc-pCV5Z + SOC理论获得了6个Ω态[$ {{{\mathrm{X}}}}{}^3\Sigma _{{0^ + }}^{{ - }} $, $ {{\text{X}}^{3}}{{\Sigma }}_{1}^{{ - }} $, (1)2, (2)2, (2)1和(1)0]之间的跃迁偶极距. 并且本文获得的电离能、光谱和振动–转动跃迁数据与现有的测量值符合得非常好. 研究发现: 1) (1)2(υ' = 0—6, J' = 2, +)的辐射寿命随着υ'的增大而逐渐缩短, 辐射宽度随着υ'的增大而逐渐增宽; (1)2(υ' = 0—6, J' = 2, +)–$ {\text{X}}{}^3{{\Sigma }}_1^{{ - }} $(υ'', J'' = 1, –)自发辐射较弱. 2)(2)2第一势阱(υ' = 0—2, J' = 2, +), (2)1(υ' = 0—9, J' = 1, +)和(1)0(υ' = 0—8, J' = 0, +)的辐射寿命都是随着υ'的增大而逐渐增长, 辐射宽度都随着υ'的增大而逐渐变窄; (2)2第一势阱(υ' = 0—2, J' = 2, +)–$ {\text{X}}{}^3{{\Sigma }}_1^{{ - }} $(υ'', J'' = 1, –), (2)1(υ' = 0—9, J' = 1, +)– $ {\text{X}}{}^{3}{{\Sigma }}_{{{0}^ + }}^{{ - }} $(υ'', J'' = 1, –)和(1)0(υ' = 0—8, J' = 0, +)–$ {\text{X}}{}^3{{\Sigma }}_1^{{ - }} $(υ'', J'' = 1, –)的自发辐射很强. 3) (2)2第一势阱(υ' = 0—2, +), (2)1(υ' = 0—9, +)和(1)0(υ' = 0—8, +)的辐射寿命都是随着J'的增大而逐渐增长. 本文数据集可在科学数据银行数据库 https://www. doi.org/10.57760/sciencedb.j00213.00058中访问获取.
    Based on the selection of appropriate active space and basis sets, and consideration of various physical effects such as scalar relativistic effect, core-valence electron correlation, complete basis set limit and spin-orbit coupling effect, the precise ionization energy of X3Σ/a1Δ/b1Σ+/A3Π/c1Π(OH+)←X2Π(OH), and the potential energy curves of 14 Λ-S and 27 Ω states of OH+ are obtained by using the optimized icMRCI + Q method. The transition dipole moments between six Ω states[$ {\mathrm{X}}{}^3\Sigma _{{0^ + }}^{{ - }} $, $ {{\text{X}}^{3}}{{\Sigma }}_{1}^{{ - }} $, (1)2, (2)2, (2)1, and (1)0] are obtained by using the all electron icMRCI/cc-pCV5Z + SOC theory. The ionization energy, spectroscopic and vibrational-rotational transition data obtained in this work are in good agreement with the existing measurements. The findings in this work are as follows. 1) The radiation lifetimes of (1)2(υ' = 0–6, J' = 2, +) gradually decrease with υ' increasing, while the radiation widths correspondingly increase; the spontaneous emissions of (1)2(υ' = 0–6, J' = 2, +)–$ {\text{X}}{}^3{{\Sigma }}_1^{{ - }} $(υ'', J'' = 1, –) are weak. 2) The radiation lifetimes of (2)21st well(υ' = 0–2, J' = 2, +), (2)1(υ' = 0–9, J' = 1, +), and (1)0(υ' = 0–8, J' = 0, +) all gradually increase as υ' increases, while their radiation widths narrow with υ' increasing; the spontaneous emissions of (2)21st well(υ' = 0–2, J' = 2, +)–$ {\text{X}}{}^3{{\Sigma }}_1^{{ - }} $(υ'', J'' = 1, –), (2)1(υ' = 0–9, J' = 1, +)–$ {\text{X}}{}^{3}{{\Sigma }}_{{{0}^ + }}^{{ - }} $(υ'', J'' = 1, –), and (1)0(υ' = 0–8, J' = 0, +)–$ {\text{X}}{}^3{{\Sigma }}_1^{{ - }} $(υ'', J'' = 1, –) are strong. 3) The radiation lifetimes of (2)21st well(υ' = 0–2, +), (2)1(υ' = 0–9, +), and (1)0(υ' = 0–8, +) all gradually increase with J' increasing. The datasets presented in this work, including the potential energy curves of 14 Λ-S and 27 Ω states, 7 pairs of transition dipole moments between the 6 Ω states [$ {{\mathrm{X}}}^3\Sigma _{{0^ + }}^{{ - }} $, $ {\text{X}}{}^3{{\Sigma }}_1^{{ - }} $, (1)2, (2)2, (2)1, (1)0], and distributions of the radiative lifetime varying with the J' of the (2)21st well(υ' = 0–2, +), (2)1(υ' = 0–9, +), and (1)0(υ' = 0–8, +) states may be available at https://www.doi.org/10.57760/sciencedb.j00213.00058.
      通信作者: 邢伟, wei19820403@163.com
    • 基金项目: 国家自然科学基金(批准号: 61275132, 11274097, 12074328)、河南省自然科学基金(批准号: 242300420263)、河南省高等学校重点科研项目(批准号: 21A140023, 25B140003)和信阳师范学院南湖学者奖励计划青年项目资助的课题.
      Corresponding author: Xing Wei, wei19820403@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61275132, 11274097, 12074328), the Natural Science Foundation of Henan Province, China (Grant No. 242300420263), the Foundation of Henan Educational Committee (Grant Nos. 21A140023, 25B140003), and the Nanhu Scholars Program for Young Scholars of Xinyang Normal University, China.
    [1]

    Wyrowski F, Menten K M, Güsten R, Belloche A 2010 Astron. Astrophys. 518 A26Google Scholar

    [2]

    Gupta H, Rimmer P, Pearson J C, Yu S, Herbst E, Harada N, Bergin E A, Neufeld D A 2010 Astron. Astrophys. 521 L47Google Scholar

    [3]

    Van der Tak F F S, Nagy Z, Ossenkopf V, Makai Z, Black J H, Faure A, Gerin M, Bergin E A 2013 Astron. Astrophys. 560 A95Google Scholar

    [4]

    Barlow M J, Swinyard B M, Owen P J, Cernicharo J, Gomez H L, Ivison R J, Krause O, Lim T L, Matsuura M, Miller S, Olofsson G, Polehampton E T 2013 Science 342 1343Google Scholar

    [5]

    Aleman I, Ueta T, Ladjal D, Exter K M, Kastner J H, Montez Jr R, Tielens A G G M, Chu Y H, Izumiura H, McDonald I, Sahai R, Siódmiak N, Szczerba R, van Hoof P A M, Villaver E, Vlemmings W, Wittkowski M, Zijlstra A A 2014 Astron. Astrophys. 566 A79Google Scholar

    [6]

    Zhao D, Galazutdinov G A, Linnartz H, Krełowski J 2015 Astrophys. J. Lett. 805 L12Google Scholar

    [7]

    Rodebush W H, Wahl M H 1933 J. Chem. Phys. 1 696Google Scholar

    [8]

    Katsumata S, Lloyd D R 1977 Chem. Phys. Lett. 45 519Google Scholar

    [9]

    Van Lonkhuyzen H, De Lange C A 1984 Mol. Phys. 51 551Google Scholar

    [10]

    Wiedmann R T, Tonkyn R G, White M G, Wang K, McKoy V 1992 J. Chem. Phys. 97 768Google Scholar

    [11]

    Cutler J N, He Z X, Samson J A R 1995 J. Phys. B: At. Mol. Opt. Phys. 28 4577Google Scholar

    [12]

    Barr J D, De Fanis A, Dyke J M, Gamblin S D, Hooper N, Morris A, Stranges S, West J B, Wright T G 1999 J. Chem. Phys. 110 345Google Scholar

    [13]

    Garcia G A, Tang X F, Gil J F, Nahon L, Ward M, Batut S, Fittschen C, Taatjes C A, Osborn D L, Loison J C 2015 J. Chem. Phys. 142 164201Google Scholar

    [14]

    Helm H, Cosby P C, Huestis D L 1984 Phys. Rev. A 30 851Google Scholar

    [15]

    Levin J, Hechtfischer U, Knoll L, Lange M, Saathoff G, Wester R, Wolf A, Schwalm D, Zajfman D 2000 Hyperfine Interact. 127 267Google Scholar

    [16]

    Hechtfischer U, Levin J, Lange M, Knoll L, Schwalm D, Wester R, Wolf A, Zajfman D 2019 J. Chem. Phys. 151 044303Google Scholar

    [17]

    Curtis L J, Erman P 1977 J. Opt. Soc. Am. 67 1218Google Scholar

    [18]

    Möhlmann G R, Bhutani K K, De Heer F J, Tsurubuchi S 1978 Chem. Phys. 31 273Google Scholar

    [19]

    Bekooy J P, Verhoeve P, Meerts W L, Dymanus A 1985 J. Chem. Phys. 82 3868Google Scholar

    [20]

    Gruebele M H W, Müller R P, Saykally R J 1986 J. Chem. Phys. 84 2489Google Scholar

    [21]

    Varberg T D, Evenson K M, Brown J M 1994 J. Chem. Phys. 100 2487Google Scholar

    [22]

    Crofton M W, Altman R S, Jagod M F, Oka T 1985 J. Phys. Chem. 89 3614Google Scholar

    [23]

    Rehfuss B D, Jagod M F, Xu L W, Oka T 1992 J. Mol. Spectrosc. 151 59Google Scholar

    [24]

    Markus C R, Hodges J N, Perry A J, Kocheril G S, Müller H S P, McCall B J 2016 Astrophys. J. 817 138Google Scholar

    [25]

    Müller H S P, Schlöder F, Stutzki J, Winnewisser G 2005 J. Mol. Struct. 742 215Google Scholar

    [26]

    Rodgers D J, Sarre P J 1988 Chem. Phys. Lett. 143 235Google Scholar

    [27]

    Rodgers D J, Batey A D, Sarre P J 2007 Mol. Phys. 105 849Google Scholar

    [28]

    Merer A J, Malm D N, Martin R W, Horani M, Rostas J 1975 Can. J. Phys. 53 251Google Scholar

    [29]

    Hodges J N, Bernath P F 2017 Astrophys. J. 840 81Google Scholar

    [30]

    Hodges J N, Bittner D M, Bernath P F 2018 Astrophys. J. 855 21Google Scholar

    [31]

    Meyer W 1974 Theoret. Chim. Acta 35 277Google Scholar

    [32]

    Hirst D M, Guest M F 1983 Mol. Phys. 49 1461Google Scholar

    [33]

    Saxon R P, Liu B 1986 J. Chem. Phys. 85 2099Google Scholar

    [34]

    de Vivie R, Marian C M, Peyerimhoff S D 1987 Chem. Phys. 112 349Google Scholar

    [35]

    Merchán M, Malmqvist P Å, Roos B O 1991 Theoret. Chim. Acta 79 81Google Scholar

    [36]

    Yarkony D R 1993 J. Phys. Chem. 97 111Google Scholar

    [37]

    Li X, Paldus J 2000 J. Mol. Struct. (Theochem) 527 165Google Scholar

    [38]

    Spirko J A, Mallis J T, Hickman A P 2000 J. Phys. B: At. Mol. Opt. Phys. 33 2395Google Scholar

    [39]

    Gómez-Carrasco S, Godard B, Lique F, Bulut N, Kłos J, Roncero O, Aguado A, Aoiz F J, Castillo J F, Goicoechea J R, Etxaluze M, Cernicharo J 2014 Astrophys. J. 794 33Google Scholar

    [40]

    Xavier F G D, Martínez-González M, Varandas A J C 2018 Chem. Phys. Lett. 691 421Google Scholar

    [41]

    Sansonetti J E, Martin W C 2005 J. Phys. Chem. Ref. Data 34 1559Google Scholar

    [42]

    MOLPRO, version 2010.1, a package of ab initio programs, Werner H J, Knowles P J, Lindh R, Manby F R, Schütz M http://www.molpro.net [2024-9-7]

    [43]

    朱宇豪, 李瑞 2024 73 053101Google Scholar

    Zhu Y H, Li R 2024 Acta Phys. Sin. 73 053101Google Scholar

    [44]

    邢伟, 李胜周, 孙金锋, 李文涛, 朱遵略, 刘锋 2022 71 103101Google Scholar

    Xing W, Li S Z, Sun J F, Li W T, Zhu Z L, Liu F 2022 Acta Phys. Sin. 71 103101Google Scholar

    [45]

    邢伟, 李胜周, 孙金锋, 曹旭, 朱遵略, 李文涛, 李悦毅, 白春旭 2023 72 163101Google Scholar

    Xing W, Li S Z, Sun J F, Cao X, Zhu Z L, Li W T, Li Y Y, Bai C X 2023 Acta Phys. Sin. 72 163101Google Scholar

    [46]

    Dunning Jr T H 1989 J. Chem. Phys. 90 1007Google Scholar

    [47]

    Wilson A K, van Mourik T, Dunning Jr T H 1996 J. Mol. Struct. (Theochem) 388 339Google Scholar

    [48]

    Woon D E, Dunning Jr T H 1995 J. Chem. Phys. 103 4572Google Scholar

    [49]

    Wolf A, Reiher M, Hess B A 2002 J. Chem. Phys. 117 9215Google Scholar

    [50]

    Oyeyemi V B, Krisiloff D B, Keith J A, Libisch F, Pavone M, Carter E A 2014 J. Chem. Phys. 140 044317Google Scholar

    [51]

    Berning A, Schweizer M, Werner H J, Knowles P J, Palmieri P 2000 Mol. Phys. 98 1823Google Scholar

    [52]

    Le Roy R J 2017 J. Quant. Spectrosc. Ra. 186 167Google Scholar

  • 图 1  (a) OH+离子14个Λ-S态的势能曲线以及(b)第四离解极限O+(2Du) + H(2Sg)对应的6个态的放大图

    Fig. 1.  Potential energy curves of OH+ cation for (a) 14 Λ-S states and (b) enlarged graphs of 6 states corresponding to the fourth dissociation limit O+(2Du) + H(2Sg).

    图 2  OH+离子27个Ω态的势能曲线

    Fig. 2.  Potential energy curves of 27 Ω states of the OH+ cation.

    图 3  OH+ 7对跃迁的跃迁偶极矩曲线

    Fig. 3.  Curves of the transition dipole moments versus internuclear separation of seven-pair states of the OH+.

    图 4  (2)2第一势阱(υ' = 0—2, +)态的辐射寿命随转动量子数J'的分布

    Fig. 4.  Distributions of the radiative lifetime varying as the J' of the (2)2 1st well (υ' = 0–2, +) state.

    图 6  (1)0(υ' = 0–8, +)态的辐射寿命随转动量子数J'的分布

    Fig. 6.  Distributions of the radiative lifetime varying as the J' of the (1)0(υ' = 0–8, +) state.

    图 5  (2)1(υ' = 0–9, +)态的辐射寿命随转动量子数J'的分布

    Fig. 5.  Distributions of the radiative lifetime varying as the J' of the (2)1(υ' = 0–9, +) state.

    表 1  OH+离子前5个离解极限产生的14个Λ-S态的离解关系

    Table 1.  Dissociation relationships of the 14 Λ-S states generated from the first five dissociation asymptotes of the OH+ cation.

    离解极限 Λ-S态 能量/cm–1
    本文 实验[41] 理论[33] 理论[38] 本文与实验[41]的偏差
    O(3Pg) + H+(1Sg) X3Σ, A3Π 0 0* 0 0 0
    O+(4Su) + H(2Sg) 23Σ, 15Σ 159 158 –3042 –3441 1(0.63%)
    O(1Dg) + H+(1Sg) a1Δ, b1Σ+, c1Π 15709 15739 30(0.19%)
    O+(2Du) + H(2Sg) 11Σ, 33Σ, 21Π, 23Π, 21Δ, 13Δ 26859 26979* 25123 24262 120(0.45%)
    O(1Sg) + H+(1Sg) 21Σ+ 33522 33664 142(0.42%)
    注: *表示J能级的算术平均值.
    下载: 导出CSV

    表 2  icMRCI+Q/56+SR+CV理论水平上OH自由基X2Π态的垂直电离能(VIEs)和绝热电离能(AIEs)

    Table 2.  Vertical ionization energies (VIEs) and adiabatic ionization energies (AIEs) for X2Π state of OH radical at the theoretical level of icMRCI+Q/56+SR+CV.

    电离VIEs/eVAIEs/eV
    本文本文实验[8]实验[9]实验[10]实验[11]实验[12]实验[13]理论[31]
    OH+(X3Σ)←OH(X2Π)12.89513.01013.01013.01013.01713.01613.020
    OH+(a1Δ)←OH(X2Π)15.01715.13715.20015.17015.178
    OH+(b1Σ+)←OH(X2Π)16.48116.59516.61016.599
    OH+(A3Π)←OH(X2Π)16.69916.48016.48016.474
    OH+(c1Π)←OH(X2Π)18.85818.31118.300a)
    注: a)表示利用实验值[9,11]和理论[32]导出的值.
    下载: 导出CSV

    表 3  icMRCI + Q/56 + SR + CV理论水平上OH+离子12个Λ-S态的光谱常数

    Table 3.  Spectroscopic constants of the 12 Λ-S states of OH+ at level of icMRCI + Q/56 + SR + CV.

    Λ-S态 来源 Te/cm–1 Re/nm ωe/cm–1 ωexe/cm–1 Be/cm–1 102αe/cm–1 De/eV Re处主要的价电子组态a
    X3Σ 本文 0 0.10275 3119.57 82.7602 16.8372 74.9926 5.183 22200(93.33%)
    实验[23] 0 0.10289 3119.3 83.1372 16.7946 74.883 5.1978±0.0056bc
    实验[24] 0 3119.29 83.1273 16.7945 74.8377 5.2009±0.0004bd
    实验[25] 0 3119.32 83.1606 16.7945 74.838
    实验[29] 0 0.10292 3119.3 83.139 16.7948 74.903 5.1817±0.0001be
    理论[31] 0 0.10283 3124 84.7 16.77 73.7 5.24
    理论[32] 0 0.10328 3104 77.8 16.57 69 5.31
    理论[33] 0 0.1031 3088.1 72.8 16.58 77 5.358
    理论[34] 0 0.10218 3128 16.41
    理论[35] 0 0.1031 3090 80.8 16.75 75 5.24
    理论[36] 0 0.10324 3124 72.1
    理论[38] 0 0.1034 3076.3 75.6 5.406
    理论[39] 0 0.10284 5.1949
    理论[40] 0 0.10286 3121.98 78.6019 16.8066 74.72 5.19
    a1Δ 本文 17275.95 0.10258 3099.03 69.1178 16.617 61.5397 4.984 22200(93.54%)
    实验[9] 28417.44f 0.1035 2960.00g 4.96
    实验[21] 16.4921h
    理论[32] 19042.74 0.10364 3122 76.6 16.61 67 5.05
    理论[36] 18002.8 0.10305 3164.1 68.9
    理论[37] 0.10242 3182 16.94 5.05
    A3Π 本文 28473.1 0.11345 2138.5 78.2863 13.7634 81.0012 1.653 21300(93.12%)
    实验[28] 28438.55 0.11354 2133.65 79.55 13.7916 88.89
    实验[29] 0.11354 13.7991 85.71
    实验[30] 2135.08 79.55 13.8127 89.174 1.6621i
    理论[32] 29350.5 0.1147 2187 87.6 13.66 80 1.66
    理论[33] 28689 0.1134 2219.8 83.2 13.8 88 1.786
    理论[34] 29520 0.11314 2100 13.46
    理论[35] 28914 0.1137 2178 86.4 13.76 85 1.7
    理论[36] 28772.9 0.11399 2157.5 78.4
    理论[39] 28522.65 0.10356 1.6938
    b1Σ+ 本文 28908.98 0.10285 3120.57 90.0316 16.8047 75.2825 3.5524 22200(89.10%)
    实验[9] 0.1032 16.2986j 3.52
    实验[27] 29063.23k 16.3070h
    实验[28] 29058.76k 0.10440l 16.3200h
    实验[29] 29060.88k 16.3057h
    理论[32] 30415.16 0.10398 3132 89 16.53 68 3.63
    理论[34] 30034 0.10216 2979 16.34
    理论[36] 29571 0.10331 3127.4 70.9
    15Σ 本文 41583.64 0.2943 231.573 41.7526 2.05857 38.2184 0.047 21210(95.72%)
    c1Π 本文 43398.91 0.12205 1807.3 52.1931 11.9113 63.5297 1.7697 21300(89.98%)
    理论[32] 45021.85 0.12382 1825 49.3 11.76 60 1.84
    理论[36] 44151.1 0.12258 1797.3 52.4
    11Σ 本文 68266.49 0.30473 205.002 24.5737 1.72803 12.7854 0.0415 21210(96.16%)
    13Δ 本文 68367.67 0.29629 229.065 41.8813 2.03045 37.9223 0.0456 21210(96.10%)
    33Σ 本文 68372.93 0.3365 166.609 41.479 1.60991 42.7186 0.0215 21210(88.50%)
    21Π 本文 68473.67 0.37389 142.463 36.1618 1.2721 30.9438 0.0221 22110(49.82%),
    20310(46.00%)
    23Π 本文 68500.45 0.32916 187.681 39.4373 1.65197 35.0742 0.0346 22110(49.63%),
    20310(46.34%)
    21Σ+ 本文 69946.13 0.20031 774.652 16.7243 4.39776 17.0302 0.7099 21210(79.24%),
    22200(13.54%)
    注: a 表示小括号里是组态函数系数的平方值; b 表示De = D0 + 1/2ωe – 1/4ωexe; c 表示D0用实验值[14]; d 表示D0用实验值[15];
    e 表示D0用实验值[16]; f 表示实验[29]T4值; g 表示ΔG1/2 = ωe – 2ωexe值; h 表示B0值; i 表示实验[16]De值;
    j 表示实验[26]B0值; k 表示T0值; l 表示r0值.
    下载: 导出CSV

    表 4  OH+离子27个Ω态的离解关系

    Table 4.  Dissociation relationships of the 27 Ω states of the OH+ cation.

    原子态Ω态能量/cm–1
    本文实验[41]偏差
    O(3P2) + H+(1S0)2, 1, 0+000
    O(3P1) + H+(1S0)1, 0+1561582(1.27%)
    O(3P0) + H+(1S0)02332276(2.64%)
    O+(4S3/2) + H(2S1/2)2, 1(2), 0+, 01591581(0.63%)
    O(1D2) + H+(1S0)2, 1, 0+157891586879(0.50%)
    O+(2D5/2) + H(2S1/2)3, 2(2), 1(2), 0+, 02685026969119(0.44%)
    O+(2D3/2) + H(2S1/2)2, 1(2), 0+, 02686526989124(0.46%)
    O(1S0) + H+(1S0)0+3360233793191(0.57%)
    下载: 导出CSV

    表 5  利用icMRCI+Q/56+SR+CV+SOC理论获得的27个Ω态的光谱常数

    Table 5.  Spectroscopic constants obtained by the icMRCI+Q/56+SR+CV+SOC calculations for the 27 Ω states.

    Ω态 Te/cm–1 Re/nm ωe/cm–1 ωexe/cm–1 Be/cm–1 102αe/cm–1 De/eV Re附近主要的Λ-S态/%
    $ {{\mathrm{X}}}^3\Sigma _{{0^{{ + }}}}^{{ - }} $ 0 0.10275 3119.56 82.7599 16.8371 74.9924 5.1839 X3Σ (100.00)
    $ {{\mathrm{X}}}^3\Sigma _{1}^{{ - }} $ 1.10 0.10275 3119.56 82.7605 16.8371 74.9928 5.1839 X3Σ (100.00)
    (1)2 17276.38 0.10258 3143.20 75.2690 16.8297 65.3477 3.0345 a1Δ(100.00)
    (2)2第一势阱 28390.58 0.11344 2116.85 87.1647 13.6626 83.5584 1.9206 A3Π (100.00)
    (2)2第二势阱 41585.61 0.29125 307.074 118.127 2.17713 57.2189 0.0476 15Σ (99.54), A3Π(0.46)
    (2)1 28474.20 0.11345 2138.51 78.3049 13.7632 80.9914 1.6649 A3Π (100.00)
    (2)0+ 28555.41 0.11344 1805.75 30.4828 14.0502 19.4672 1.6535 A3Π(99.80), b1Σ+ (0.20)
    (1)0 28558.92 0.11345 2143.13 80.1777 13.7510 80.1793 1.6642 A3Π (100.00)
    (3)0+ 29091.36 0.10590 4018.05 516.736 15.9062 92.3184 2.9603 b1Σ+ (60.16), A3Π (39.84)
    (2)0 41616.12 0.27885 508.208 269.788 3.27403 261.169 0.0432 15Σ (99.92), A3Π(0.08)
    (3)1第一势阱 43400.67 0.12205 1819.77 63.4260 11.9318 65.8296 0.4771 c1Π (100.00)
    (3)1第二势阱 41596.15 0.28279 442.071 249.963 2.51688 115.517 0.0456 15Σ (99.86), A3Π(0.14)
    (3)2 44255.74 0.20168 2659.30 144.453 4.35488 9.35580 1.6417 15Σ (99.96), a1Δ(0.04)
    (4)1 49829.74 0.18030 2272.64 5.48251 0.3371 c1Π (100.00)
    (5)1 54259.84 0.22212 1941.70 151.368 3.60130 0.654805 0.4229 23Σ(100.00)
    (4)0+ 55193.04 0.21833 1647.33 79.8804 3.66204 13.6759 0.2949 23Σ(99.98), b1Σ+ (0.02)
    $ 1{}^1\Sigma _{{0^{{ - }}}}^{{ - }} $ 68267.80 0.30475 204.965 24.6976 1.73120 11.9130 0.0413 11Σ(99.96), 23Π (0.04)
    (4)2 68368.10 0.29640 230.081 2.07414 0.0208 13Δ(99.48), 23Π (0.52)
    (6)1 68368.54 0.29656 127.077 18.7167 1.82500 52.1092 0.0206 13Δ(99.92), 23Π (0.06), 21Π (0.02)
    13Δ3 68368.76 0.29637 228.281 41.3801 2.03594 39.5081 0.0459 13Δ(99.60), 23Π (0.31), 21Π (0.09)
    (7)1 68401.46 0.31996 250.949 122.777 1.54500 22.1293 0.0319 33Σ(99.84), 23Π (0.14), 13Δ(0.02)
    $ 2{}^3{\Pi } _{{0^{{ - }}}}$ 68495.84 0.32899 187.387 39.4356 1.65368 35.1602 0.0345 23Π (99.92), 11Σ(0.08)
    (8)1 68496.06 0.35896 153.965 14.4797 1.61808 38.6184 0.0301 21Π (83.68), 13Δ(16.04), 33Σ (0.16), 23Π (0.12)
    (5)0+ 68497.37 0.32883 186.692 38.8488 1.65406 35.2124 0.0345 23Π (99.78), 33Σ (0.22)
    (5)2 68506.37 0.33050 174.741 46.7308 1.56130 27.0797 0.0286 23Π (98.56), 13Δ(1.41), 21Δ(0.03)
    (9)1 68521.74 0.34815 254.961 99.3048 1.48466 43.6473 0.0326 23Π (74.31) , 21Π (25.33), 13Δ(0.20), 33Σ(0.16)
    (6)2 68577.04 0.38175 239.914 107.796 1.28460 45.2791 0.0255 21Δ(64.52), 23Π (21.84), 13Δ(13.64)
    (6)0+第一势阱 69938.22 0.19913 819.249 4.57228 0.0532 21Σ+ (100.00)
    (6)0+第二势阱 68372.93 0.33578 170.459 1.64605 0.0200 33Σ (99.80), 23Π (0.20)
    (7)0+ 71244.98 0.23618 1301.75 84.4584 3.19755 17.2462 0.5493 21Σ+ (100.00)
    下载: 导出CSV

    表 6  (1)2(υ' = 0—6, J' = 2, +) –$ {\text{X}}{}^3{{\Sigma }}_1^{{ - }} $(υ'', J'' = 1, –)系统一些相对大的振转跃迁数据

    Table 6.  Some of the relatively large rovibrational transition data of the (1)2(υ' = 0—6, J' = 2, +) –$ {\text{X}}{}^3{{\Sigma }}_1^{{ - }} $(υ'', J'' = 1, –) system.

    (υ', υ'') $\tilde {v} $/cm–1 Aυ'J'υ''J''/s–1 Rυ'J'υ''J'' gfυ'J'υ''J'' λυ'J'υ''J''/nm (υ', υ'') $\tilde {v} $/cm–1 Aυ'J'υ''J''/s–1 Rυ'J'υ''J'' gfυ'J'υ''J'' λυ'J'υ''J''/nm
    (0, 0) 17290.86 4.697 0.9999 1.178×10–7 578.75 (1, 1) 17325.10 4.805 0.9994 1.200×10–7 577.61
    (2, 2) 17364.56 5.000 0.9977 1.243×10–7 576.30 (3, 3) 17409.07 5.370 0.9925 1.328×10–7 574.82
    (4, 4) 17458.00 6.227 0.9692 1.532×10–7 573.21 (5, 5) 17507.16 8.971 0.8697 2.194×10–7 571.60
    (6, 5) 19754.69 2.405 0.0926 4.619×10–8 506.57 (6, 6) 17525.09 18.652 0.7184 4.552×10–7 571.02
    (6, 7) 15420.20 3.590 0.1383 1.132×10–7 648.96
    下载: 导出CSV

    表 11  (1)0(υ' = 0—8, J' = 0, +)–$ {\text{X}}{}^3{{\Sigma }}_1^{{ - }} $(υ'', J'' = 1, –)系统一些相对大的振转跃迁数据

    Table 11.  Some of the relatively large rovibrational transition data of the (1)0(υ' = 0—8, J' = 0, +)–$ {\text{X}}{}^3{{\Sigma }}_1^{{ - }} $(υ'', J'' = 1, –) system.

    (υ', υ'') $\tilde {v} $/cm–1 Aυ'J'υ''J''/s–1 Rυ'J'υ''J'' gfυ'J'υ''J'' λυ'J'υ''J''/nm (υ', υ'') $\tilde {v} $/cm–1 Aυ'J'υ''J''/s–1 Rυ'J'υ''J'' gfυ'J'υ''J'' λυ'J'υ''J''/nm
    (0, 0) 28055.26 3.529×105 0.8487 6.722×10–4 356.69 (0, 1) 25099.04 5.942×104 0.1429 1.414×10–4 398.71
    (1, 0) 30035.40 2.672×105 0.6811 4.440×10–4 333.18 (1, 1) 27079.17 6.332×104 0.1614 1.294×10–4 369.55
    (1, 2) 24280.23 5.498×104 0.1401 1.398×10–4 412.15 (2, 0) 31855.40 1.351×105 0.3658 1.995×10–4 314.14
    (2, 1) 28899.17 1.964×105 0.5320 3.526×10–4 346.28 (2, 3) 23452.11 2.954×104 0.0800 8.052×10–5 426.70
    (3, 0) 33520.87 5.900×104 0.1716 7.871×10–5 298.53 (3, 1) 30564.65 1.891×105 0.5499 3.034×10–4 327.41
    (3, 2) 27765.71 7.060×104 0.2053 1.373×10–4 360.41 (3, 3) 25117.59 1.016×104 0.0296 2.415×10–5 398.41
    (4, 0) 35033.48 2.459×104 0.0779 3.004×10–5 285.64 (4, 1) 32077.25 1.268×105 0.4014 1.847×10–4 311.97
    (4, 2) 29278.31 1.351×105 0.4277 2.362×10–4 341.79 (4, 4) 24127.03 1.819×104 0.0576 4.684×10–5 414.77
    (5, 0) 36389.76 1.031×104 0.0361 1.167×10–5 275.00 (5, 1) 33433.53 7.329×104 0.2567 9.829×10–5 299.31
    (5, 2) 30634.59 1.363×105 0.4774 2.178×10–4 326.66 (5, 3) 27986.47 5.080×104 0.1779 9.723×10–5 357.57
    (5, 5) 23119.53 1.149×104 0.0402 3.222×10–5 432.84 (6, 1) 34625.09 3.990×104 0.1586 4.989×10–5 289.01
    (6, 2) 31826.15 1.057×105 0.4199 1.564×10–4 314.43 (6, 3) 29178.03 8.285×104 0.3293 1.459×10–4 342.97
    (7, 1) 35638.53 2.122×104 0.1002 2.505×10–5 280.79 (7, 2) 32839.59 7.141×104 0.3370 9.927×10–5 304.73
    (7, 3) 30191.47 8.521×104 0.4021 1.401×10–4 331.45 (7, 4) 27688.31 2.233×104 0.1054 4.367×10–5 361.42
    (8, 1) 36451.92 1.110×104 0.0674 1.253×10–5 274.53 (8, 2) 33652.98 4.397×104 0.2671 5.821×10–5 297.36
    (8, 3) 31004.86 6.811×104 0.4137 1.062×10–4 322.76 (8, 4) 28501.70 3.247×104 0.1972 5.992×10–5 351.11
    下载: 导出CSV

    表 12  (1)2(υ' = 0—6, J' = 2, +), (2)2第一势阱(υ' = 0—2, J' = 2, +), (2)1(υ' = 0—9, J' = 1, +)和(1)0(υ' = 0—8, J' = 0, +)态的辐射寿命(τυ'J')和辐射宽度(Γr)

    Table 12.  Spontaneous radiative lifetimes (τυ'J') and radiation widths (Γr) for the (1)2(υ' = 0—6, J' = 2, +), (2)21 st well(υ' = 0—2, J' = 2, +), (2)1(υ' = 0—9, J' = 1, +), and (1)0(υ' = 0—8, J' = 0, +) states.

    υ'(1)2(J' = 2, +)(2)2第一势阱(J' = 2, +)(2)1(J' = 1, +)(1)0(J' = 0, +)
    τυ'J'/sΓr/cm–1τυ'J'/μsΓr/cm–1τυ'J'/μsΓr/cm–1τυ'J'/μsΓr/cm–1
    02.129×10–12.494×10–114.0711.304×10–62.4252.189×10–62.4052.207×10–6
    12.080×10–12.553×10–114.3171.230×10–62.5752.062×10–62.5492.083×10–6
    21.995×10–12.661×10–114.5661.163×10–62.7421.936×10–62.7091.960×10–6
    31.848×10–12.872×10–112.9411.805×10–62.9081.826×10–6
    41.556×10–13.411×10–113.1931.663×10–63.1661.677×10–6
    59.695×10–25.476×10–113.5271.505×10–63.5021.516×10–6
    63.852×10–21.378×10–104.0031.326×10–63.9751.336×10–6
    74.7561.116×10–64.7191.125×10–6
    86.1338.656×10–76.0748.740×10–7
    99.7325.455×10–7
    下载: 导出CSV

    表 7  (2)2第一势阱(υ' = 0—2, J' = 2, +)–$ {\text{X}}{}^3{{\Sigma }}_1^{{ - }} $(υ'', J'' = 1, –)系统一些相对大的振转跃迁数据

    Table 7.  Some of the relatively large rovibrational transition data of the (2)21st well(υ' = 0—2, J' = 2, +)–$ {\text{X}}{}^3{{\Sigma }}_1^{{ - }} $(υ'', J'' = 1, –) system.

    (υ', υ'') $\tilde {v} $/cm–1 Aυ'J'υ''J''/s–1 Rυ'J'υ''J'' gfυ'J'υ''J'' λυ'J'υ''J''/nm (υ', υ'') $\tilde {v} $/cm–1 Aυ'J'υ''J''/s–1 Rυ'J'υ''J'' gfυ'J'υ''J'' λυ'J'υ''J''/nm
    (0, 0) 27894.61 2.088×105 0.8501 2.011×10–3 358.75 (0, 1) 24939.11 3.481×104 0.1417 4.195×10–4 401.26
    (1, 0) 29872.69 1.578×105 0.6811 1.325×10–3 334.99 (1, 1) 26917.19 3.754×104 0.1620 3.883×10–4 371.77
    (1, 2) 24118.96 3.239×104 0.1398 4.174×10–4 414.91 (2, 0) 31697.63 7.997×104 0.3651 5.966×10–4 315.71
    (2, 1) 28742.14 1.167×105 0.5328 1.059×10–3 348.17 (2, 3) 23296.47 1.755×104 0.0801 2.424×10–4 429.55
    下载: 导出CSV

    表 8  (2)2第一势阱(υ' = 0—2, J' = 2, +)–(1)2(υ'' = 0—6, J'' = 2, –)系统一些相对大的振转跃迁数据

    Table 8.  Some of the relatively large rovibrational transition data of the (2)21st well(υ'' = 0—2, J'' = 2, +)–(1)2(υ' = 0—6, J' = 2, –) system.

    (υ', υ'') $\tilde {v} $/cm–1 Aυ'J'υ''J''/s–1 Rυ'J'υ''J'' gfυ'J'υ''J'' λυ'J'υ''J''/nm (υ', υ'') $\tilde {v} $/cm–1 Aυ'J'υ''J''/s–1 Rυ'J'υ''J'' gfυ'J'υ''J'' λυ'J'υ''J''/nm
    (0, 0) 10603.75 8.289×10–1 0.4227 5.526×10–8 943.73 (0, 1) 7614.01 9.020×10–1 0.4600 1.166×10–7 1314.30
    (0, 2) 4776.32 2.229×10–1 0.1137 7.323×10–8 2095.15 (1, 1) 9592.09 7.948×10–1 0.2470 6.475×10–8 1043.27
    (1, 2) 6754.40 1.695 0.5268 2.785×10–7 1481.57 (1, 3) 4062.45 6.954×10–1 0.2161 3.159×10–7 2463.32
    (2, 1) 11417.04 2.469×10–1 0.0522 1.420×10–8 876.51 (2, 2) 8579.35 3.663×10–1 0.0774 3.730×10–8 1166.42
    (2, 3) 5887.40 2.393 0.5057 5.176×10–7 1699.75 (2, 4) 3335.98 1.634 0.3453 1.101×10–6 2999.75
    下载: 导出CSV

    表 9  (2)1(υ' = 0—9, J' = 1, +)–$ {\text{X}}{}^{3}{{\Sigma }}_{{{0}^ + }}^{{ - }} $(υ'', J'' = 1, –)系统一些相对大的振转跃迁数据

    Table 9.  Some of the relatively large rovibrational transition data of the (2)1(υ' = 0—9, J' = 1, +)–$ {\text{X}}{}^{3}{{\Sigma }}_{{{0}^ + }}^{{ - }} $(υ'', J'' = 1, –) system.

    (υ', υ'') $\tilde {v} $/cm–1 Aυ'J'υ''J''/s–1 Rυ'J'υ''J'' gfυ'J'υ''J'' λυ'J'υ''J''/nm (υ', υ'') $\tilde {v} $/cm–1 Aυ'J'υ''J''/s–1 Rυ'J'υ''J'' gfυ'J'υ''J'' λυ'J'υ''J''/nm
    (0, 0) 27965.39 3.506×105 0.8501 2.016×10–3 357.84 (0, 1) 25009.90 5.843×104 0.1417 4.202×10–4 400.13
    (1, 0) 29943.66 2.641×105 0.6799 1.325×10–3 334.20 (1, 1) 26988.16 6.325×104 0.1629 3.905×10–4 370.80
    (1, 2) 24189.93 5.441×104 0.1401 4.182×10–4 413.69 (2, 0) 31764.79 1.328×105 0.3643 5.921×10–4 315.04
    (2, 1) 28809.30 1.944×105 0.5331 1.053×10–3 347.36 (2, 3) 23363.62 2.932×104 0.0804 2.416×10–4 428.32
    (3, 0) 33431.51 5.815×104 0.1711 2.340×10–4 299.33 (3, 1) 30476.01 1.870×105 0.5501 9.054×10–4 328.36
    (3, 2) 27677.78 6.990×104 0.2056 4.104×10–4 361.56 (3, 3) 25030.34 1.005×104 0.0296 7.214×10–5 399.80
    (4, 0) 34944.02 2.441×104 0.0780 8.991×10–5 286.38 (4, 1) 31988.52 1.257×105 0.4015 5.524×10–4 312.83
    (4, 2) 29190.29 1.339×105 0.4276 7.066×10–4 342.82 (4, 4) 24040.36 1.797×104 0.0574 1.399×10–4 416.26
    (5, 0) 36299.50 1.030×104 0.0364 3.517×10–5 275.68 (5, 1) 33344.00 7.281×104 0.2569 2.945×10–4 300.12
    (5, 2) 30545.77 1.352×105 0.4771 6.518×10–4 327.61 (5, 3) 27898.33 5.042×104 0.1779 2.914×10–4 358.70
    (5, 5) 23032.70 1.136×104 0.0401 9.634×10–5 434.47 (6, 1) 34534.85 3.964×104 0.1588 1.495×10–4 289.77
    (6, 2) 31736.61 1.047×105 0.4196 4.677×10–4 315.32 (6, 3) 29089.18 8.218×104 0.3292 4.368×10–4 344.01
    (7, 1) 35547.78 2.106×104 0.1003 7.497×10–5 281.51 (7, 2) 32749.55 7.069×104 0.3367 2.964×10–4 305.56
    (7, 3) 30102.11 8.440×104 0.4020 4.189×10–4 332.44 (7, 4) 27599.61 2.217×104 0.1056 1.309×10–4 362.58
    (8, 1) 36360.64 1.099×104 0.0676 3.738×10–5 275.22 (8, 2) 33562.40 4.340×104 0.2669 1.733×10–4 298.16
    (8, 3) 30914.97 6.726×104 0.4135 3.165×10–4 323.70 (8, 4) 28412.47 3.211×104 0.1974 1.789×10–4 352.21
    (9, 2) 34140.09 2.256×104 0.2208 8.706×10–5 293.12 (9, 3) 31492.65 4.091×104 0.4004 1.855×10–4 317.76
    (9, 4) 28990.16 2.652×104 0.2595 1.419×10–4 345.19
    下载: 导出CSV

    表 10  (2)1(υ' = 0—9, J' = 1, +)–$ {\text{X}}{}^{3}{{\Sigma }}_1^{{ - }} $(υ'', J'' = 1, –)系统一些相对大的振转跃迁数据

    Table 10.  Some of the relatively large rovibrational transition data of the (2)1(υ' = 0—9, J' = 1, +)–$ {\text{X}}{}^{3}{{\Sigma }}_1^{{ - }} $(υ'', J'' = 1, –) system.

    (υ', υ'') $\tilde {v} $/cm–1 Aυ'J'υ''J''/s–1 Rυ'J'υ''J'' gfυ'J'υ''J'' λυ'J'υ''J''/nm (υ', υ'') $\tilde {v} $/cm–1 Aυ'J'υ''J''/s–1 Rυ'J'υ''J'' gfυ'J'υ''J'' λυ'J'υ''J''/nm
    (1, 2) 24188.98 14.520 0.4462 1.116×10–7 413.71 (1, 3) 21541.54 11.472 0.3525 1.112×10–7 464.55
    (2, 3) 23362.68 14.495 0.2927 1.194×10–7 428.34 (2, 4) 20860.18 22.383 0.4519 2.313×10–7 479.72
    (3, 5) 20163.77 31.625 0.4455 3.498×10–7 496.29 (3, 6) 17934.17 20.553 0.2895 2.874×10–7 557.99
    (4, 6) 19446.68 32.540 0.3270 3.870×10–7 514.59 (4, 7) 17341.78 37.885 0.3807 5.666×10–7 577.05
    (4, 8) 15355.11 16.627 0.1671 3.172×10–7 651.71 (5, 7) 18697.26 20.944 0.1501 2.694×10–7 535.22
    (5, 8) 16710.59 53.996 0.3871 8.697×10–7 598.85 (5, 9) 14841.43 38.644 0.2770 7.891×10–7 674.27
    (5, 10) 13079.78 13.397 0.0960 3.522×10–7 765.08 (6, 9) 16032.28 52.569 0.2677 9.199×10–7 624.19
    (6, 10) 14270.63 69.718 0.3551 1.540×10–6 701.24 (6, 11) 12614.35 38.853 0.1979 1.098×10–6 793.31
    (6, 12) 11057.45 11.896 0.0606 4.376×10–7 905.01 (7, 8) 18914.37 15.055 0.0540 1.893×10–7 529.07
    (7, 10) 15283.56 21.802 0.0782 4.198×10–7 654.76 (7, 11) 13627.29 82.287 0.2950 1.993×10–6 734.34
    (7, 12) 12070.38 84.988 0.3047 2.624×10–6 829.06 (7, 13) 10610.41 45.344 0.1626 1.811×10–6 943.14
    (7, 14) 9242.54 16.140 0.0579 8.498×10–7 1082.72 (8, 10) 16096.42 21.461 0.0525 3.725×10–7 621.70
    (8, 12) 12883.24 36.235 0.0886 9.819×10–7 776.75 (8, 13) 11423.27 1.084×102 0.2652 3.737×10–6 876.03
    (8, 14) 10055.40 1.167×102 0.2854 5.190×10–6 995.20 (8, 15) 8775.90 72.526 0.1774 4.235×10–6 1140.29
    (8, 16) 7582.30 28.761 0.0704 2.250×10–6 1319.80 (9, 12) 13460.92 25.783 0.0457 6.400×10–7 743.42
    (9, 14) 10633.08 18.148 0.0322 7.219×10–7 941.13 (9, 15) 9353.58 84.526 0.1499 4.345×10–6 1069.87
    (9, 16) 8159.98 1.224×102 0.2171 8.269×10–6 1226.36 (9, 17) 7049.23 1.066×102 0.1892 9.652×10–6 1419.60
    (9, 18) 6018.46 75.084 0.1332 9.323×10–6 1662.74 (9, 19) 5065.82 51.744 0.0918 9.068×10–6 1975.42
    (9, 20) 4190.19 32.125 0.0570 8.229×10–6 2388.22 (9, 21) 3390.23 14.439 0.0256 5.650×10–6 2951.75
    下载: 导出CSV
    Baidu
  • [1]

    Wyrowski F, Menten K M, Güsten R, Belloche A 2010 Astron. Astrophys. 518 A26Google Scholar

    [2]

    Gupta H, Rimmer P, Pearson J C, Yu S, Herbst E, Harada N, Bergin E A, Neufeld D A 2010 Astron. Astrophys. 521 L47Google Scholar

    [3]

    Van der Tak F F S, Nagy Z, Ossenkopf V, Makai Z, Black J H, Faure A, Gerin M, Bergin E A 2013 Astron. Astrophys. 560 A95Google Scholar

    [4]

    Barlow M J, Swinyard B M, Owen P J, Cernicharo J, Gomez H L, Ivison R J, Krause O, Lim T L, Matsuura M, Miller S, Olofsson G, Polehampton E T 2013 Science 342 1343Google Scholar

    [5]

    Aleman I, Ueta T, Ladjal D, Exter K M, Kastner J H, Montez Jr R, Tielens A G G M, Chu Y H, Izumiura H, McDonald I, Sahai R, Siódmiak N, Szczerba R, van Hoof P A M, Villaver E, Vlemmings W, Wittkowski M, Zijlstra A A 2014 Astron. Astrophys. 566 A79Google Scholar

    [6]

    Zhao D, Galazutdinov G A, Linnartz H, Krełowski J 2015 Astrophys. J. Lett. 805 L12Google Scholar

    [7]

    Rodebush W H, Wahl M H 1933 J. Chem. Phys. 1 696Google Scholar

    [8]

    Katsumata S, Lloyd D R 1977 Chem. Phys. Lett. 45 519Google Scholar

    [9]

    Van Lonkhuyzen H, De Lange C A 1984 Mol. Phys. 51 551Google Scholar

    [10]

    Wiedmann R T, Tonkyn R G, White M G, Wang K, McKoy V 1992 J. Chem. Phys. 97 768Google Scholar

    [11]

    Cutler J N, He Z X, Samson J A R 1995 J. Phys. B: At. Mol. Opt. Phys. 28 4577Google Scholar

    [12]

    Barr J D, De Fanis A, Dyke J M, Gamblin S D, Hooper N, Morris A, Stranges S, West J B, Wright T G 1999 J. Chem. Phys. 110 345Google Scholar

    [13]

    Garcia G A, Tang X F, Gil J F, Nahon L, Ward M, Batut S, Fittschen C, Taatjes C A, Osborn D L, Loison J C 2015 J. Chem. Phys. 142 164201Google Scholar

    [14]

    Helm H, Cosby P C, Huestis D L 1984 Phys. Rev. A 30 851Google Scholar

    [15]

    Levin J, Hechtfischer U, Knoll L, Lange M, Saathoff G, Wester R, Wolf A, Schwalm D, Zajfman D 2000 Hyperfine Interact. 127 267Google Scholar

    [16]

    Hechtfischer U, Levin J, Lange M, Knoll L, Schwalm D, Wester R, Wolf A, Zajfman D 2019 J. Chem. Phys. 151 044303Google Scholar

    [17]

    Curtis L J, Erman P 1977 J. Opt. Soc. Am. 67 1218Google Scholar

    [18]

    Möhlmann G R, Bhutani K K, De Heer F J, Tsurubuchi S 1978 Chem. Phys. 31 273Google Scholar

    [19]

    Bekooy J P, Verhoeve P, Meerts W L, Dymanus A 1985 J. Chem. Phys. 82 3868Google Scholar

    [20]

    Gruebele M H W, Müller R P, Saykally R J 1986 J. Chem. Phys. 84 2489Google Scholar

    [21]

    Varberg T D, Evenson K M, Brown J M 1994 J. Chem. Phys. 100 2487Google Scholar

    [22]

    Crofton M W, Altman R S, Jagod M F, Oka T 1985 J. Phys. Chem. 89 3614Google Scholar

    [23]

    Rehfuss B D, Jagod M F, Xu L W, Oka T 1992 J. Mol. Spectrosc. 151 59Google Scholar

    [24]

    Markus C R, Hodges J N, Perry A J, Kocheril G S, Müller H S P, McCall B J 2016 Astrophys. J. 817 138Google Scholar

    [25]

    Müller H S P, Schlöder F, Stutzki J, Winnewisser G 2005 J. Mol. Struct. 742 215Google Scholar

    [26]

    Rodgers D J, Sarre P J 1988 Chem. Phys. Lett. 143 235Google Scholar

    [27]

    Rodgers D J, Batey A D, Sarre P J 2007 Mol. Phys. 105 849Google Scholar

    [28]

    Merer A J, Malm D N, Martin R W, Horani M, Rostas J 1975 Can. J. Phys. 53 251Google Scholar

    [29]

    Hodges J N, Bernath P F 2017 Astrophys. J. 840 81Google Scholar

    [30]

    Hodges J N, Bittner D M, Bernath P F 2018 Astrophys. J. 855 21Google Scholar

    [31]

    Meyer W 1974 Theoret. Chim. Acta 35 277Google Scholar

    [32]

    Hirst D M, Guest M F 1983 Mol. Phys. 49 1461Google Scholar

    [33]

    Saxon R P, Liu B 1986 J. Chem. Phys. 85 2099Google Scholar

    [34]

    de Vivie R, Marian C M, Peyerimhoff S D 1987 Chem. Phys. 112 349Google Scholar

    [35]

    Merchán M, Malmqvist P Å, Roos B O 1991 Theoret. Chim. Acta 79 81Google Scholar

    [36]

    Yarkony D R 1993 J. Phys. Chem. 97 111Google Scholar

    [37]

    Li X, Paldus J 2000 J. Mol. Struct. (Theochem) 527 165Google Scholar

    [38]

    Spirko J A, Mallis J T, Hickman A P 2000 J. Phys. B: At. Mol. Opt. Phys. 33 2395Google Scholar

    [39]

    Gómez-Carrasco S, Godard B, Lique F, Bulut N, Kłos J, Roncero O, Aguado A, Aoiz F J, Castillo J F, Goicoechea J R, Etxaluze M, Cernicharo J 2014 Astrophys. J. 794 33Google Scholar

    [40]

    Xavier F G D, Martínez-González M, Varandas A J C 2018 Chem. Phys. Lett. 691 421Google Scholar

    [41]

    Sansonetti J E, Martin W C 2005 J. Phys. Chem. Ref. Data 34 1559Google Scholar

    [42]

    MOLPRO, version 2010.1, a package of ab initio programs, Werner H J, Knowles P J, Lindh R, Manby F R, Schütz M http://www.molpro.net [2024-9-7]

    [43]

    朱宇豪, 李瑞 2024 73 053101Google Scholar

    Zhu Y H, Li R 2024 Acta Phys. Sin. 73 053101Google Scholar

    [44]

    邢伟, 李胜周, 孙金锋, 李文涛, 朱遵略, 刘锋 2022 71 103101Google Scholar

    Xing W, Li S Z, Sun J F, Li W T, Zhu Z L, Liu F 2022 Acta Phys. Sin. 71 103101Google Scholar

    [45]

    邢伟, 李胜周, 孙金锋, 曹旭, 朱遵略, 李文涛, 李悦毅, 白春旭 2023 72 163101Google Scholar

    Xing W, Li S Z, Sun J F, Cao X, Zhu Z L, Li W T, Li Y Y, Bai C X 2023 Acta Phys. Sin. 72 163101Google Scholar

    [46]

    Dunning Jr T H 1989 J. Chem. Phys. 90 1007Google Scholar

    [47]

    Wilson A K, van Mourik T, Dunning Jr T H 1996 J. Mol. Struct. (Theochem) 388 339Google Scholar

    [48]

    Woon D E, Dunning Jr T H 1995 J. Chem. Phys. 103 4572Google Scholar

    [49]

    Wolf A, Reiher M, Hess B A 2002 J. Chem. Phys. 117 9215Google Scholar

    [50]

    Oyeyemi V B, Krisiloff D B, Keith J A, Libisch F, Pavone M, Carter E A 2014 J. Chem. Phys. 140 044317Google Scholar

    [51]

    Berning A, Schweizer M, Werner H J, Knowles P J, Palmieri P 2000 Mol. Phys. 98 1823Google Scholar

    [52]

    Le Roy R J 2017 J. Quant. Spectrosc. Ra. 186 167Google Scholar

  • [1] 邢伟, 李胜周, 孙金锋, 曹旭, 朱遵略, 李文涛, 李悦毅, 白春旭. AlH分子10个Λ-S态和26个Ω态光谱性质的理论研究.  , 2023, 72(16): 163101. doi: 10.7498/aps.72.20230615
    [2] 邢伟, 李胜周, 孙金锋, 李文涛, 朱遵略, 刘锋. BH分子8个Λ-S态和23个Ω态光谱性质的理论研究.  , 2022, 71(10): 103101. doi: 10.7498/aps.71.20220038
    [3] 高峰, 张红, 张常哲, 赵文丽, 孟庆田. SiH+(X1Σ+)的势能曲线、光谱常数、振转能级和自旋-轨道耦合理论研究.  , 2021, 70(15): 153301. doi: 10.7498/aps.70.20210450
    [4] 罗华锋, 万明杰, 黄多辉. BH+离子基态及激发态的势能曲线和跃迁性质的研究.  , 2018, 67(4): 043101. doi: 10.7498/aps.67.20172409
    [5] 李晨曦, 郭迎春, 王兵兵. O2分子B3u-态势能曲线的从头计算.  , 2017, 66(10): 103101. doi: 10.7498/aps.66.103101
    [6] 黄多辉, 万明杰, 王藩侯, 杨俊升, 曹启龙, 王金花. GeS分子基态和低激发态的势能曲线与光谱性质.  , 2016, 65(6): 063102. doi: 10.7498/aps.65.063102
    [7] 刘慧, 邢伟, 施德恒, 孙金锋, 朱遵略. BCl分子X1Σ+, a3Π和A1Π态的光谱性质.  , 2014, 63(12): 123102. doi: 10.7498/aps.63.123102
    [8] 李瑞, 张晓美, 李奇楠, 罗旺, 金明星, 徐海峰, 闫冰. SiS低激发态势能曲线和光谱性质的全电子组态相互作用方法研究.  , 2014, 63(11): 113102. doi: 10.7498/aps.63.113102
    [9] 黄多辉, 王藩侯, 杨俊升, 万明杰, 曹启龙, 杨明超. SnO分子的X1Σ+, a3Π和A1Π态的势能曲线与光谱性质.  , 2014, 63(8): 083102. doi: 10.7498/aps.63.083102
    [10] 朱遵略, 郎建华, 乔浩. SF分子基态及低激发态势能函数与光谱常数的研究.  , 2013, 62(16): 163103. doi: 10.7498/aps.62.163103
    [11] 李松, 韩立波, 陈善俊, 段传喜. SN-分子离子的势能函数和光谱常数研究.  , 2013, 62(11): 113102. doi: 10.7498/aps.62.113102
    [12] 陈恒杰. LiAl分子基态、激发态势能曲线和振动能级.  , 2013, 62(8): 083301. doi: 10.7498/aps.62.083301
    [13] 高雪艳, 尤凯, 张晓美, 刘彦磊, 刘玉芳. 多参考组态相互作用方法研究BS+离子的势能曲线和光谱性质.  , 2013, 62(23): 233302. doi: 10.7498/aps.62.233302
    [14] 刘慧, 邢伟, 施德恒, 孙金锋, 朱遵略. PS自由基X2Π态的势能曲线和光谱性质.  , 2013, 62(20): 203104. doi: 10.7498/aps.62.203104
    [15] 郭雨薇, 张晓美, 刘彦磊, 刘玉芳. BP+基态和激发态的势能曲线和光谱性质的研究.  , 2013, 62(19): 193301. doi: 10.7498/aps.62.193301
    [16] 于坤, 张晓美, 刘玉芳. 从头计算研究BCl+基态和激发态的势能曲线和光谱性质.  , 2013, 62(6): 063301. doi: 10.7498/aps.62.063301
    [17] 施德恒, 牛相宏, 孙金锋, 朱遵略. BF自由基X1+和a3态光谱常数和分子常数研究.  , 2012, 61(9): 093105. doi: 10.7498/aps.61.093105
    [18] 刘慧, 施德恒, 孙金锋, 朱遵略. MRCI方法研究CSe(X1Σ+)自由基的光谱常数和分子常数.  , 2011, 60(6): 063101. doi: 10.7498/aps.60.063101
    [19] 王新强, 杨传路, 苏涛, 王美山. BH分子基态和激发态解析势能函数和光谱性质.  , 2009, 58(10): 6873-6878. doi: 10.7498/aps.58.6873
    [20] 钱 琪, 杨传路, 高 峰, 张晓燕. 多参考组态相互作用方法计算研究XOn(X=S, Cl;n=0,±1)的解析势能函数和光谱常数.  , 2007, 56(8): 4420-4427. doi: 10.7498/aps.56.4420
计量
  • 文章访问数:  246
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-15
  • 修回日期:  2024-10-11
  • 上网日期:  2024-10-18
  • 刊出日期:  2024-11-20

/

返回文章
返回
Baidu
map