-
本文利用量子化学中的多参考组态相互作用方法(MRCI), 在aug-cc-pVQZ级别计算了在环境科学中具有重要作用的离子BP+. 得到了对应三个离解极限B+(1Sg)+P(4Su), B+(1Sg)+P(2Du)以及B+(1Sg)+P(2Pu)的6个Λ-S态势能曲线. 在计算中还考虑了Davidson修正(+Q)和标量相对论效应, 用以提高计算精度. 通过分析Λ-S态的电子结构, 确认了电子态的多组态特性. 计算中首次纳入了旋轨耦合效应, 获得了由BP+离子的6个Λ-S态分裂出的10个Ω 态的势能曲线. 计算得到的势能曲线表明相同对称性的Ω 态的势能曲线存在着明显的避免交叉. 在得到的Λ-S态和Ω 态的势能曲线的基础上, 运用LEVEL8.0程序通过求解核径向的Schrödinger 方程, 得到了相应的Λ-S态和Ω 态的光谱常数Te, Re, ωe, ωeχe, Be和De, 其中基态X4∑-的光谱常数与已有的理论值符合的非常好, 文中其他电子态的光谱常数均为首次报道.
-
关键词:
- 多参考组态相互作用方法(MRCI) /
- 势能曲线 /
- 光谱常数 /
- 旋轨耦合效应
The multi-reference configuration interaction (MRCI) method in quantum chemistry is used to investigate the BP+ at the level of aug-cc-pVQZ basis set. The potential energy curves of 6 Λ-S states of BP+ radical are obtained, which can be correlated to the dissociation limit B+(1Sg)+P(4Su), B+(1Sg)+P(2Du) and B+(1Sg)+P(2Pu). In order to get the accurate potential energy curves, the Davidson correction (+Q) and scalar relativistic effect are taken into consideration. Analyses of the electronic structures of Λ-S states demonstrate that the Λ-S electronic states are multi-configurational in nature. The spin-orbit interaction is considered for the first time sofar as we have, which makes 6 Λ-S states split to 10 Ω states. The calculation results show that the crossing between the Ω states of the same symmetry can be aveided. Then the spectroscopic constants of the bound Λ-S and Ω states are obtained by solving the radial Schrödinger equation with the program LEVEL8.0 according to the MRCI wave functions. By comparing with available experimental results, the spectroscopic constants of ground states are in good agreement with the available theoretical values. The remaining computational results in this paper are reported also for the first time.-
Keywords:
- multi-reference configuration interaction method(MRCI) /
- potential energy curve /
- spectroscopic constant /
- spin-orbit coupling
[1] Xu G L, Lv W J, Xiao X H, Zhang X Z, Liu Y F, Zhu Z L, Sun J F 2008 Acta Phys. Sin. 57 7577 (in Chinese) [徐国亮, 吕文静, 肖小红, 张现周, 刘玉芳, 朱遵略, 孙金锋 2008 57 7577]
[2] Zhu Z H, Yu H G 1997 Molecular structure and potential energy functions (Beijing: Science Rress) p2 (in Chinese) [朱正和, 俞华根 1997 分子结构与分子式能函数 (北京: 科学出版社) 第2页]
[3] Gingerich K A 1972 J. Chem. Phys. 56 4239
[4] Boldyrev A I, Simons J 1993 J. Phys. Chem. 97 6149
[5] Boldyrev A I, Gonzales N, Simons J 1994 J. Phys. Chem. 98 6149
[6] Gan Z, Grant D J, Harrisson R J, Dixon D A 2006 J. Chem. Phys. 125 124311
[7] Chan G K, Handy N C 2000 J. Chem. Phys. 112 5639
[8] Bruna P J, Grein F 2001 J. Phys. Chem. A 1053328
[9] Burrill S, Grein F, 2005 J. Mol. Struct. (THEOCHEM) 757 137
[10] Qu Y, Ma W, Bian X, Tang H, Tian W 2006 Int. J. Quantum Chem. 106 960
[11] Roberto Linguerri, Najia Komiha, Rainer Oswald, Alexander Mitrushchenkova, Pavel Rosmusa 2008 Chem. Phys. 346 1
[12] Gao F, Yang C L, Zhang X Y 2007 Acta Phys. Sin. 56 2547 (in Chinese) [高峰, 杨传路, 张晓燕 2007 56 2547]
[13] Qian Q, Yang C L, Gao F, Zhang X Y 2007 Acta Phys. Sin. 56 4420 (in Chinese) [钱琪, 杨传路, 高峰, 张晓燕 2007 56 4420]
[14] Wang X Q, Yang C L, Su T, Wang M S 2009 Acta Phys. Sin. 58 6873 (in Chinese) [王新强, 杨传路, 苏涛, 王美山 2009 58 6873]
[15] Werner H J, Knowles P J 1988 J. Chem. Phys. 89 5803
[16] Knowles P J, Werner H J 1988 Chem. Phys. Lett. 145 514
[17] Wang X Y, Ding S L 2004 Acta Phys. Sin. 53 423 (in Chinese) [王晓艳, 丁世良 2004 53 423]
[18] Han H X, Peng Q, Wen Z Y, Wang Y B 2005 Acta Phys. Sin. 54 78 (in Chinese) [韩慧仙, 彭谦, 文振翼, 王育彬 2005 54 78]
[19] Le Roy R J 2007 LEVEL 8.0: A Computer Program for Solving the Radial Schrödinger Eqation for Bound and Quasibound Levels. University of Waterloo Chemical Phsics Research Report CP-663
[20] Zhang J P, Chen L, Shi D H 2008 J. At. Mol. Phys. 25 739 (in Chinese) [张金平, 陈丽, 施德恒 2008 原子与分子 25 739]
[21] Werner H J, Knowles P J 1985 J. Chem. Phys. 82 5053
[22] Werner H J, Knowles P J 1985 J. Chem. Phys. 115 259
[23] Xu K Z 2006 Advanced atomic and molecular physics 2nd ed. (Beijing: Science Press) p212 (in Chinese) [徐克尊 2006 高等原子分子物理学 2版 (北京: 科学出版社) 第212页]
[24] Yan B, Pan S F, Wang Z G, Yu J H 2005 Acta Phys. Sin. 54 5618 (in Chinese) [闫冰, 潘守甫, 王志刚, 于俊华 2005 54 5618]
[25] Li R, Lian K Y, Li Q N, Miao F J, Yan Bing, Jin M X 2012 Chin. Phys. B 21 123102
[26] Xu K Z 2006 Advanced atomic and molecular physics 2nd ed. (Beijing: Science Press) p153 (in Chinese) [徐克尊 2006 高等原子分子物理学 2版 (北京: 科学出版社) 第153页]
[27] Moore C E 1971 Atomic energy levels (Washington, DC: National Bureau of Standards)
-
[1] Xu G L, Lv W J, Xiao X H, Zhang X Z, Liu Y F, Zhu Z L, Sun J F 2008 Acta Phys. Sin. 57 7577 (in Chinese) [徐国亮, 吕文静, 肖小红, 张现周, 刘玉芳, 朱遵略, 孙金锋 2008 57 7577]
[2] Zhu Z H, Yu H G 1997 Molecular structure and potential energy functions (Beijing: Science Rress) p2 (in Chinese) [朱正和, 俞华根 1997 分子结构与分子式能函数 (北京: 科学出版社) 第2页]
[3] Gingerich K A 1972 J. Chem. Phys. 56 4239
[4] Boldyrev A I, Simons J 1993 J. Phys. Chem. 97 6149
[5] Boldyrev A I, Gonzales N, Simons J 1994 J. Phys. Chem. 98 6149
[6] Gan Z, Grant D J, Harrisson R J, Dixon D A 2006 J. Chem. Phys. 125 124311
[7] Chan G K, Handy N C 2000 J. Chem. Phys. 112 5639
[8] Bruna P J, Grein F 2001 J. Phys. Chem. A 1053328
[9] Burrill S, Grein F, 2005 J. Mol. Struct. (THEOCHEM) 757 137
[10] Qu Y, Ma W, Bian X, Tang H, Tian W 2006 Int. J. Quantum Chem. 106 960
[11] Roberto Linguerri, Najia Komiha, Rainer Oswald, Alexander Mitrushchenkova, Pavel Rosmusa 2008 Chem. Phys. 346 1
[12] Gao F, Yang C L, Zhang X Y 2007 Acta Phys. Sin. 56 2547 (in Chinese) [高峰, 杨传路, 张晓燕 2007 56 2547]
[13] Qian Q, Yang C L, Gao F, Zhang X Y 2007 Acta Phys. Sin. 56 4420 (in Chinese) [钱琪, 杨传路, 高峰, 张晓燕 2007 56 4420]
[14] Wang X Q, Yang C L, Su T, Wang M S 2009 Acta Phys. Sin. 58 6873 (in Chinese) [王新强, 杨传路, 苏涛, 王美山 2009 58 6873]
[15] Werner H J, Knowles P J 1988 J. Chem. Phys. 89 5803
[16] Knowles P J, Werner H J 1988 Chem. Phys. Lett. 145 514
[17] Wang X Y, Ding S L 2004 Acta Phys. Sin. 53 423 (in Chinese) [王晓艳, 丁世良 2004 53 423]
[18] Han H X, Peng Q, Wen Z Y, Wang Y B 2005 Acta Phys. Sin. 54 78 (in Chinese) [韩慧仙, 彭谦, 文振翼, 王育彬 2005 54 78]
[19] Le Roy R J 2007 LEVEL 8.0: A Computer Program for Solving the Radial Schrödinger Eqation for Bound and Quasibound Levels. University of Waterloo Chemical Phsics Research Report CP-663
[20] Zhang J P, Chen L, Shi D H 2008 J. At. Mol. Phys. 25 739 (in Chinese) [张金平, 陈丽, 施德恒 2008 原子与分子 25 739]
[21] Werner H J, Knowles P J 1985 J. Chem. Phys. 82 5053
[22] Werner H J, Knowles P J 1985 J. Chem. Phys. 115 259
[23] Xu K Z 2006 Advanced atomic and molecular physics 2nd ed. (Beijing: Science Press) p212 (in Chinese) [徐克尊 2006 高等原子分子物理学 2版 (北京: 科学出版社) 第212页]
[24] Yan B, Pan S F, Wang Z G, Yu J H 2005 Acta Phys. Sin. 54 5618 (in Chinese) [闫冰, 潘守甫, 王志刚, 于俊华 2005 54 5618]
[25] Li R, Lian K Y, Li Q N, Miao F J, Yan Bing, Jin M X 2012 Chin. Phys. B 21 123102
[26] Xu K Z 2006 Advanced atomic and molecular physics 2nd ed. (Beijing: Science Press) p153 (in Chinese) [徐克尊 2006 高等原子分子物理学 2版 (北京: 科学出版社) 第153页]
[27] Moore C E 1971 Atomic energy levels (Washington, DC: National Bureau of Standards)
计量
- 文章访问数: 6243
- PDF下载量: 439
- 被引次数: 0