Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Tunable beam propagation based on cylindrically symmetric gradient index system

Wen Guang-Feng Zhao Ling-Zhong Zhang Lin Chen Yi-Yun Luo Qi-Lin Fang An-An Liu Shi-Yang

Citation:

Tunable beam propagation based on cylindrically symmetric gradient index system

Wen Guang-Feng, Zhao Ling-Zhong, Zhang Lin, Chen Yi-Yun, Luo Qi-Lin, Fang An-An, Liu Shi-Yang
PDF
HTML
Get Citation
  • In this work, a cylindrically symmetric gradient-refractivity two-dimensional electromagnetic system is constructed by using the magnetic metamaterials consisting of an array of ferrite rods. With the change of the bias magnetic field, the different gradient-refractivity systems can be obtained, based on which a tunable flexible beam is demonstrated. Based on the effective-medium theory, the effective electric permittivity and the effective magnetic permeability can be retrieved and thus the effective refractive index is obtained straightforwardly. It is shown that with the variation of the ferrite rod radius, an effective refractivity profile with particular gradient can be realized, which exhibits the electromagnetic “black-hole-like” effect. Especially, the gradient refractivity profile is also designed by introducing the gradient bias magnetic field, which, in principle, results in the refractivity profile with many different gradients. Finally, the propagation of a Gaussian beam in the gradient-refractivity system is simulated by using the multiple scattering theory. A few different phenomena are observed such as the “black-hole” effect, the interior beam deflection, the exterior beam deflection, and the beam splitting. Furthermore, the functionalities can be switched between each other by controlling the bias magnetic field and adding an additional degree of freedom for beam propagation.
      Corresponding author: Liu Shi-Yang, syliu@zjnu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11574275), the Natural Science Foundation of Zhejiang Province, China (Grant No. LR16A040001), and the Middle-aged and Young Teachers’ Basic Ability Promotion Project of Guangxi Province, China (Grant No. 2022 KY1604).
    [1]

    Joannopoulos J D, Meade R D, Winn J N 2008 Photonic Crystals (New Jersey: Princeton University Press)

    [2]

    Yan B, Xie J L, Liu E X, Peng Y C, Ge R, Liu J J, Wen S C 2019 Phys. Rev. Appl. 12 044004Google Scholar

    [3]

    Vaidya S, Benalcazar W A, Cerjan A, Rechtsman M C 2021 Phys. Rev. Lett. 127 023605Google Scholar

    [4]

    Shi F L, Cao Y, Chen X D, Liu J W, Chen W J, Chen M, Dong J W 2021 Phys. Rev. Appl. 15 024002Google Scholar

    [5]

    Xie B Y, Su G X, Wang H F, Liu F, Hu L M, Yu S Y, Zhan P, Lu M H, Wang Z L, Chen Y F 2020 Nat. Commun. 11 3768Google Scholar

    [6]

    Cai W S, Shalaev V 2010 Optical Metamaterials: Fundamentals and Applications (New York: Springer)

    [7]

    Yu N F, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333Google Scholar

    [8]

    Sun S L, He Q, Xiao S Y, Xu Q, Li X, Zhou L 2012 Nat. Mater. 11 426Google Scholar

    [9]

    Chen H T, Taylor A J, Yu N F 2016 Rep. Prog. Phys. 79 076401Google Scholar

    [10]

    Li L, Liu Z X, Ren X F, Wang S M, Su V, Chen M K, Chu C H, Kuo H Y, Liu B H, Zang W B, Guo G C, Zhang L J, Wang Z L, Zhu S N, Tsai D P 2020 Science 368 1487Google Scholar

    [11]

    Nikolov D K, Bauer A, Cheng F, Kato H, Vamivakas A N, Rolland J P 2021 Sci. Adv. 7 eabe5112Google Scholar

    [12]

    Leonhardt U 2006 Science 312 1777Google Scholar

    [13]

    Pendry J B, Schurig D, Smith D R 2006 Science 312 1780Google Scholar

    [14]

    Lai Y, Ng J, Chen H Y, Zhang Z Q, Chan C T 2010 Front. Phys. China 5 308Google Scholar

    [15]

    Xu L, Chen H Y 2015 Nat. Photonics 9 15Google Scholar

    [16]

    McCall M, Pendry J B, Galdi V, et al. 2018 J. Opt. 20 063001Google Scholar

    [17]

    Chen H Y, Chan C T 2010 J. Phys. D: Appl. Phys. 43 113001Google Scholar

    [18]

    Zhu J, Liu Y Q, Liang Z X, Chen T N, Li J S 2018 Phys. Rev. Lett. 121 234301Google Scholar

    [19]

    Schittny R, Kadic M, Guenneau S, Wegener M 2013 Phys. Rev. Lett. 110 195901Google Scholar

    [20]

    Zhang S, Genov D A, Sun C, Zhang X 2008 Phys. Rev. Lett. 100 123002Google Scholar

    [21]

    Elyasi M, Bhatia C S, Qiu C W, Yang H 2016 Phys. Rev. B 93 104418Google Scholar

    [22]

    Yang F, Mei Z L, Jin T Y, Cui T J 2012 Phys. Rev. Lett. 109 053902Google Scholar

    [23]

    Magnus F, Wood B, Moore J, Morrison K, Perkings G, Fyson J, Wiltshire M C K, Caplin D, Cohen L F, Pendry J B 2008 Nat. Mater. 7 295Google Scholar

    [24]

    Xu Y D, Fu Y Y, Chen H Y 2016 Nat. Rev. Mater. 1 16067Google Scholar

    [25]

    Xu L, Chen H Y, Tyc T, Xie Y B, Cummer S A 2016 Phys. Rev. B 93 041406Google Scholar

    [26]

    Xu L, Ge H, Li J S, He R Q, Zhou J J, Zhu S N, Liu H, Chen H Y, 2020 Phys. Rev. Appl. 13 054007Google Scholar

    [27]

    Ma Y G, Ong C K, Tyc T, Leonhardt U 2009 Nat. Mater. 8 639Google Scholar

    [28]

    Smolyaninova V N, Smolyaninov I I, Kildishev A V, Shalaev V 2010 Opt. Lett. 35 3396Google Scholar

    [29]

    Zentgraf T, Liu Y M, Mikkelsen M H, Valentine J, Zhang X 2011 Nat. Nanotechnol. 6 151Google Scholar

    [30]

    Bitton O, Bruch R, Leonhardt U 2018 Phys. Rev. Appl. 10 044059Google Scholar

    [31]

    Zhang Y, He Y, Wang H W, Sun L, Su Y K 2021 ACS Photonics 8 202

    [32]

    Genov D A, Zhang S, Zhang X 2009 Nat. Phys. 5 687Google Scholar

    [33]

    Torres T, Patrick S, Coutant A, Richartz M, Tedford E W, Weinfurtner S 2017 Nat. Phys. 13 833Google Scholar

    [34]

    Roldán-Molina A, Nunez A S, Duine R A 2017 Phys. Rev. Lett. 118 061301Google Scholar

    [35]

    Mi Y Z, Zhai W, Cheng L, Xi C Y, Yu X 2021 Appl. Phys. Lett. 118 114101Google Scholar

    [36]

    Liu S Y, Chen W K, Du J J, Lin Z F, Chui S T, Chan C T 2008 Phys. Rev. Lett. 101 157407Google Scholar

    [37]

    Yu X N, Chen H J, Lin H X, Zhou J L, Yu J J, Qian C X, Liu S Y 2014 Opt. Lett. 39 4643Google Scholar

    [38]

    林海笑, 俞昕宁, 刘士阳 2015 64 034203Google Scholar

    Lin H X, Yu X N, Liu S Y 2015 Acta Phys. Sin. 64 034203Google Scholar

    [39]

    Pozar D M 2005 Microwave Engineering (3rd Ed.) (New York: Wiley)

    [40]

    Jin J F, Liu S Y, Lin Z F, Chui S T 2011 Phys. Rev. B 84 115101Google Scholar

    [41]

    Centeno E, Cassagne D, Albert J P 2006 Phys. Rev. B 73 235119Google Scholar

    [42]

    Kurt H, Citrin D S 2007 Opt. Express 15 1240Google Scholar

    [43]

    Wu Q, Gibbons J M, Park W 2008 Opt. Express 16 16941Google Scholar

    [44]

    Vasic B, Isic G, Gajic R, Hingerl K 2010 Opt. Express 18 20321Google Scholar

    [45]

    Liu S Y, Li L, Lin Z F, Chen H Y, Zi J, Chan C T 2010 Phys. Rev. B 82 054204Google Scholar

    [46]

    Felbacq D, Tayeb G, Maystre D 1994 J. Opt. Soc. Am. A 11 2526Google Scholar

    [47]

    Liu S Y, Lin Z F 2006 Phys. Rev. E 73 066609Google Scholar

    [48]

    Chen S W, Du J J, Liu S Y, Lin Z F, Chui S T 2008 Opt. Lett. 33 2476Google Scholar

    [49]

    Chen S W, Du J J, Liu S Y, Lin Z F, Chui S T 2008 Phys. Rev. A 78 043803Google Scholar

    [50]

    Chen J F, Liang W Y, Li Z Y 2020 Phys. Rev. B 101 214102Google Scholar

    [51]

    Poo Y, Wu R X, Liu S Y, Yang Y, Lin Z F, Chui S T 2012 Appl. Phys. Lett. 101 081912Google Scholar

    [52]

    Xu Y D, Gu C D, Hou B, Lai Y, Li J S, Chen H Y 2013 Nat. Commun. 4 2561Google Scholar

    [53]

    Wu H B, Xi X, Li X M, Poo Y, Liu S Y, Wu R X 2022 Photonics Res. 10 610Google Scholar

    [54]

    Luo Q L, Zhao L Z, Zhou J L, Zhang L, Wen G F, Ba Q T, Wu H B, Lin Z F, Liu S Y 2022 Front. Mater. 9 845344Google Scholar

  • 图 1  通过改变结构中的半径分布来实现折射率梯度指数 $\eta = 2$ 的体系 (a) 结构示意图显示该体系包括 25 层, 每层的厚度 $a = 12{\text{ }}{\rm{mm}}$, 内核吸收体半径 ${r_{\rm{c}}} = 5 a$, 体系的半径 $ R = 25 a $, 磁性柱的相对介电常数 ${\varepsilon _{\rm{s}}} = 25$; (b) 不同壳层中的磁性柱半径和 (c) 相应的等效介电常数 ${\varepsilon _{{\rm{eff}}}}$、等效磁导率 ${\mu _{{\rm{eff}}}}$ 及由此得到的等效折射率 ${n_{{\rm{eff}}}}$; 高斯光束入射到该体系的(d)电场分布和(e)强度分布. 施于体系的外加偏置磁场${H_0} = 480{\text{ }}{\rm{Oe}}$, 工作频率为$f = 2.7$GHz. 白色圆形标记出体系的边界和内核吸收体的边缘位置

    Figure 1.  The system with gradient index $\eta = 2$ are implemented by varying the rod radius: (a) Schematic diagram presents the system made up of 25 concentric layers with the layer thickness $a = 12{\text{ }}\rm mm$, the radius of the absorbing core part ${r_{\rm{c}}} = 5 a$, the radius of the system $ R = 25 a $, and the relative permittivity of the ferrite rod ${\varepsilon _{\rm{s}}} = 25$; (b) ferrite rod radius as well as (c) the effective permittivity ${\varepsilon _{{\rm{eff}}}}$, permeability ${\mu _{{\rm{eff}}}}$, and the corresponding effective index ${n_{{\rm{eff}}}}$ are plotted as the functions of the number of the layer; (d) electric field pattern and (e) corresponding intensity pattern are simulated for the on-center incidence of a Gaussian beam on the system. The bias magnetic field is ${H_0} = 480{\text{ }}{\rm{Oe}}$ and the operating frequency is$f = 2.7$GHz. Two white circles denote the boundaries of the system and the absorbing core part, respectively.

    图 2  采用等效介质理论计算${\varepsilon _{{\rm{eff}}}}$${\mu _{{\rm{eff}}}}$ 以及${n_{{\rm{eff}}}}$ 随外加偏置磁场 ${H_0}$ 的变化. 把磁性电磁超构材料看成是正方晶格, 晶格常数为 $a = 12{\text{ }}{\rm{mm}}$, 考察了两种不同磁性柱大小的情形 (a) 磁性柱半径为 $r_{\rm{s}}' = 0.12 a$; (b) 磁性柱半径为 ${r_{\rm{s}}} = 0.35 a$. 工作频率为$f = 2.7$ GHz

    Figure 2.  The effective permittivity ${\varepsilon _{{\rm{eff}}}}$, permeability ${\mu _{{\rm{eff}}}}$, and the corresponding effective index ${n_{{\rm{eff}}}}$ retrieved with the effective-medium theory are plotted as the functions of the bias magnetic field ${H_0}$. The magnetic metamaterial is considered as a square lattice with lattice separation $a = 12{\text{ }}{\rm{mm}}$ and two different rod radii with (a) $r_{\rm{s}}' = 0.12 a$ and (b) ${r_{\rm{s}}} = 0.35 a$ are investigated. The operating frequency is$f = 2.7$ GHz.

    图 3  通过改变空间中的外加偏置磁场 ${H_0}$ 分布实现折射率梯度指数 $\eta = 2$ 的体系 (a) 结构示意图显示该体系包括 25 层, 每层的厚度 $a = 12{\text{ }}{\rm{mm}}$, 内核吸收体半径 $r_{\rm{c}}' = 7 a$, 折射率梯度区域的内壳层半径为 $ {r_1} = 20 a $, 体系的半径 $ R = 25 a $; (b) 不同壳层中的外加磁场 ${H_0}$ 的分布; (c) 相应的${\varepsilon_{{\rm{eff}}}}$, ${\mu_{{\rm{eff}}}}$${n_{\rm eff}}$. 高斯光束对心入射到该体系的(d)电场分布, (e)强度分布以及偏心入射的(f)电场分布和(g)强度分布. 内部区域和外部区域的磁性柱半径分别为 ${r_{\rm{s}}} = 0.35 a$, $r_{\rm{s}}' = 0.12 a$, 工作频率为$f = 2.7$ GHz, 白色圆形标记出体系不同区域的位置

    Figure 3.  The system with gradient index $\eta = 2$ are implemented by varying the distribution of bias magnetic field ${H_0}$: (a) Schematic diagram presents the system made up of 25 concentric layers with the layer thickness $a = 12{\text{ }}{\rm{mm}}$, the radius of the absorbing core part $r_{\rm{c}}' = 7 a$, the inner radius of the gradient index area is $ {r_1} = 20 a $, and the radius of the system $ R = 25 a $; (b) the bias magnetic field ${H_0}$; (c) ${\varepsilon_{{\rm{eff}}}}$, ${\mu_{{\rm{eff}}}}$, ${n_{\rm eff}}$. The electric field patterns and the corresponding intensity patterns are simulated for the on-center ((d), (e)) and off-center ((f), (g)) incidence of a Gaussian beam on the system to illustrate the electromagnetic “black hole” effect. The ferrite rod radii are ${r_{\rm{s}}} = 0.35 a$ and $r_{\rm{s}}' = 0.12 a$ for the inner and outer areas, respectively, and the operating frequency is$f = 2.7$ GHz. Three white circles denote the boundaries of different areas in the system.

    图 4  通过改变空间中的外加偏置磁场${H_0}$分布实现折射率梯度指数 $\eta = - 1$ 的体系, 体系结构与图 3 相同 (a)外加偏置磁场${H_0}$的分布; (b)${\varepsilon _{{\rm{eff}}}}$, ${\mu _{{\rm{eff}}}}$, ${n_{{\rm{eff}}}}$ 分布. 高斯光束对心入射到该体系的(c)电场分布, (d)强度分布, 以及偏心入射的(e)电场分布, (f)强度分布. 内部区域和外部区域的磁性柱半径分别为 ${r_{\text{s}}} = 0.35 a$$r_{\rm{s}}' = 0.12 a$, 工作频率为$f = 2.7$GHz. 白色圆形标记出体系不同区域的位置

    Figure 4.  The system with gradient index $\eta = - 1$ are implemented by varying the distribution of bias magnetic field${H_0}$. The schematic diagram is the same as that in Fig. 3: (a) The distribution of bias magnetic field; (b)${\varepsilon _{{\rm{eff}}}}$, ${\mu _{{\rm{eff}}}}$, ${n_{{\rm{eff}}}}$. The electric field patterns and the corresponding intensity patterns are simulated for the on-center ((c), (d)) and off-center ((e), (f)) incidence of a Gaussian beam on the system. The ferrite rod radii are ${r_{\rm{s}}} = 0.35 a$ and $r_{\rm{s}}' = 0.12 a$ for the inner and outer areas, respectively, and the operating frequency is$f = 2.7$ GHz. Three white circles denote the boundaries of different areas in the system.

    图 5  通过改变空间中的外加偏置磁场${H_0}$分布来实现折射率梯度指数$\eta = 1$的体系. 体系结构与图 3 相同 (a)外加偏置磁场${H_0}$的分布; (b)${\varepsilon _{{\rm{eff}}}}$, ${\mu _{{\rm{eff}}}}$ ${n_{{\rm{eff}}}}$. 高斯光束对心入射到该体系的(c)电场分布和(d)强度分布, 以及偏心入射的(e)电场分布和(f)强度分布. 内部区域和外部区域的磁性柱半径分别为 ${r_{\rm{s}}} = 0.35 a$$r_{\rm{s}}' = 0.12 a$, 工作频率为$f = 2.7$GHz. 白色圆形标记出体系不同区域的位置

    Figure 5.  The system with gradient index $\eta = 1$ are implemented by varying the distribution of bias magnetic field${H_0}$. The schematic diagram is the same as that in Fig.3: (a) The distribution of bias magnetic field; (b)${\varepsilon _{{\rm{eff}}}}$, ${\mu _{{\rm{eff}}}}$, ${n_{{\rm{eff}}}}$. The electric field patterns and the corresponding intensity patterns are simulated for the on-center ((c), (d)) and off-center ((e), (f)) incidence of a Gaussian beam on the system. The ferrite rod radii are ${r_{\rm{s}}} = 0.35 a$ and $r_{\rm{s}}' = 0.12 a$ for the inner and outer areas, respectively, and the operating frequency is$f = 2.7$GHz. Three white circles denote the boundaries of different areas in the system.

    图 6  通过改变空间中的外加偏置磁场 ${H_0}$ 分布实现折射率梯度指数 $\eta = 3$ 的体系, 体系结构与图 3 相同 (a)外加偏置磁场 ${H_0}$分布; (b)${\varepsilon _{{\rm{eff}}}}$, ${\mu _{{\rm{eff}}}}$, ${n_{{\rm{eff}}}}$. 高斯光束对心入射到该体系的(c)电场分布, (d)强度分布, 以及偏心入射的(e)电场分布, (f)强度分布. 内部区域和外部区域的磁性柱半径分别为 ${r_{\rm{s}}} = 0.35 a$$r_{\rm{s}}' = 0.12 a$, 工作频率为$f = 2.7$GHz. 白色圆形标记出体系不同区域的位置

    Figure 6.  The system with gradient index $\eta = 3$ are implemented by varying the distribution of bias magnetic field${H_0}$. The schematic diagram is the same as that in Fig. 3: (a) The distribution of bias magnetic field; (b)${\varepsilon _{{\rm{eff}}}}$, ${\mu _{{\rm{eff}}}}$, ${n_{{\rm{eff}}}}$. The electric field patterns and the corresponding intensity patterns are simulated for the on-center ((c), (d)) and off-center ((e), (f)) incidence of a Gaussian beam on the system. The ferrite rod radii are ${r_{\rm{s}}} = 0.35 a$ and $r_{\rm{s}}' = 0.12 a$ for the inner and outer areas, respectively, and the operating frequency is$f = 2.7$GHz. Three white circles denote the boundaries of different areas in the system.

    Baidu
  • [1]

    Joannopoulos J D, Meade R D, Winn J N 2008 Photonic Crystals (New Jersey: Princeton University Press)

    [2]

    Yan B, Xie J L, Liu E X, Peng Y C, Ge R, Liu J J, Wen S C 2019 Phys. Rev. Appl. 12 044004Google Scholar

    [3]

    Vaidya S, Benalcazar W A, Cerjan A, Rechtsman M C 2021 Phys. Rev. Lett. 127 023605Google Scholar

    [4]

    Shi F L, Cao Y, Chen X D, Liu J W, Chen W J, Chen M, Dong J W 2021 Phys. Rev. Appl. 15 024002Google Scholar

    [5]

    Xie B Y, Su G X, Wang H F, Liu F, Hu L M, Yu S Y, Zhan P, Lu M H, Wang Z L, Chen Y F 2020 Nat. Commun. 11 3768Google Scholar

    [6]

    Cai W S, Shalaev V 2010 Optical Metamaterials: Fundamentals and Applications (New York: Springer)

    [7]

    Yu N F, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333Google Scholar

    [8]

    Sun S L, He Q, Xiao S Y, Xu Q, Li X, Zhou L 2012 Nat. Mater. 11 426Google Scholar

    [9]

    Chen H T, Taylor A J, Yu N F 2016 Rep. Prog. Phys. 79 076401Google Scholar

    [10]

    Li L, Liu Z X, Ren X F, Wang S M, Su V, Chen M K, Chu C H, Kuo H Y, Liu B H, Zang W B, Guo G C, Zhang L J, Wang Z L, Zhu S N, Tsai D P 2020 Science 368 1487Google Scholar

    [11]

    Nikolov D K, Bauer A, Cheng F, Kato H, Vamivakas A N, Rolland J P 2021 Sci. Adv. 7 eabe5112Google Scholar

    [12]

    Leonhardt U 2006 Science 312 1777Google Scholar

    [13]

    Pendry J B, Schurig D, Smith D R 2006 Science 312 1780Google Scholar

    [14]

    Lai Y, Ng J, Chen H Y, Zhang Z Q, Chan C T 2010 Front. Phys. China 5 308Google Scholar

    [15]

    Xu L, Chen H Y 2015 Nat. Photonics 9 15Google Scholar

    [16]

    McCall M, Pendry J B, Galdi V, et al. 2018 J. Opt. 20 063001Google Scholar

    [17]

    Chen H Y, Chan C T 2010 J. Phys. D: Appl. Phys. 43 113001Google Scholar

    [18]

    Zhu J, Liu Y Q, Liang Z X, Chen T N, Li J S 2018 Phys. Rev. Lett. 121 234301Google Scholar

    [19]

    Schittny R, Kadic M, Guenneau S, Wegener M 2013 Phys. Rev. Lett. 110 195901Google Scholar

    [20]

    Zhang S, Genov D A, Sun C, Zhang X 2008 Phys. Rev. Lett. 100 123002Google Scholar

    [21]

    Elyasi M, Bhatia C S, Qiu C W, Yang H 2016 Phys. Rev. B 93 104418Google Scholar

    [22]

    Yang F, Mei Z L, Jin T Y, Cui T J 2012 Phys. Rev. Lett. 109 053902Google Scholar

    [23]

    Magnus F, Wood B, Moore J, Morrison K, Perkings G, Fyson J, Wiltshire M C K, Caplin D, Cohen L F, Pendry J B 2008 Nat. Mater. 7 295Google Scholar

    [24]

    Xu Y D, Fu Y Y, Chen H Y 2016 Nat. Rev. Mater. 1 16067Google Scholar

    [25]

    Xu L, Chen H Y, Tyc T, Xie Y B, Cummer S A 2016 Phys. Rev. B 93 041406Google Scholar

    [26]

    Xu L, Ge H, Li J S, He R Q, Zhou J J, Zhu S N, Liu H, Chen H Y, 2020 Phys. Rev. Appl. 13 054007Google Scholar

    [27]

    Ma Y G, Ong C K, Tyc T, Leonhardt U 2009 Nat. Mater. 8 639Google Scholar

    [28]

    Smolyaninova V N, Smolyaninov I I, Kildishev A V, Shalaev V 2010 Opt. Lett. 35 3396Google Scholar

    [29]

    Zentgraf T, Liu Y M, Mikkelsen M H, Valentine J, Zhang X 2011 Nat. Nanotechnol. 6 151Google Scholar

    [30]

    Bitton O, Bruch R, Leonhardt U 2018 Phys. Rev. Appl. 10 044059Google Scholar

    [31]

    Zhang Y, He Y, Wang H W, Sun L, Su Y K 2021 ACS Photonics 8 202

    [32]

    Genov D A, Zhang S, Zhang X 2009 Nat. Phys. 5 687Google Scholar

    [33]

    Torres T, Patrick S, Coutant A, Richartz M, Tedford E W, Weinfurtner S 2017 Nat. Phys. 13 833Google Scholar

    [34]

    Roldán-Molina A, Nunez A S, Duine R A 2017 Phys. Rev. Lett. 118 061301Google Scholar

    [35]

    Mi Y Z, Zhai W, Cheng L, Xi C Y, Yu X 2021 Appl. Phys. Lett. 118 114101Google Scholar

    [36]

    Liu S Y, Chen W K, Du J J, Lin Z F, Chui S T, Chan C T 2008 Phys. Rev. Lett. 101 157407Google Scholar

    [37]

    Yu X N, Chen H J, Lin H X, Zhou J L, Yu J J, Qian C X, Liu S Y 2014 Opt. Lett. 39 4643Google Scholar

    [38]

    林海笑, 俞昕宁, 刘士阳 2015 64 034203Google Scholar

    Lin H X, Yu X N, Liu S Y 2015 Acta Phys. Sin. 64 034203Google Scholar

    [39]

    Pozar D M 2005 Microwave Engineering (3rd Ed.) (New York: Wiley)

    [40]

    Jin J F, Liu S Y, Lin Z F, Chui S T 2011 Phys. Rev. B 84 115101Google Scholar

    [41]

    Centeno E, Cassagne D, Albert J P 2006 Phys. Rev. B 73 235119Google Scholar

    [42]

    Kurt H, Citrin D S 2007 Opt. Express 15 1240Google Scholar

    [43]

    Wu Q, Gibbons J M, Park W 2008 Opt. Express 16 16941Google Scholar

    [44]

    Vasic B, Isic G, Gajic R, Hingerl K 2010 Opt. Express 18 20321Google Scholar

    [45]

    Liu S Y, Li L, Lin Z F, Chen H Y, Zi J, Chan C T 2010 Phys. Rev. B 82 054204Google Scholar

    [46]

    Felbacq D, Tayeb G, Maystre D 1994 J. Opt. Soc. Am. A 11 2526Google Scholar

    [47]

    Liu S Y, Lin Z F 2006 Phys. Rev. E 73 066609Google Scholar

    [48]

    Chen S W, Du J J, Liu S Y, Lin Z F, Chui S T 2008 Opt. Lett. 33 2476Google Scholar

    [49]

    Chen S W, Du J J, Liu S Y, Lin Z F, Chui S T 2008 Phys. Rev. A 78 043803Google Scholar

    [50]

    Chen J F, Liang W Y, Li Z Y 2020 Phys. Rev. B 101 214102Google Scholar

    [51]

    Poo Y, Wu R X, Liu S Y, Yang Y, Lin Z F, Chui S T 2012 Appl. Phys. Lett. 101 081912Google Scholar

    [52]

    Xu Y D, Gu C D, Hou B, Lai Y, Li J S, Chen H Y 2013 Nat. Commun. 4 2561Google Scholar

    [53]

    Wu H B, Xi X, Li X M, Poo Y, Liu S Y, Wu R X 2022 Photonics Res. 10 610Google Scholar

    [54]

    Luo Q L, Zhao L Z, Zhou J L, Zhang L, Wen G F, Ba Q T, Wu H B, Lin Z F, Liu S Y 2022 Front. Mater. 9 845344Google Scholar

  • [1] Wu Yu-Ming, Ding Xiao, Wang Ren, Wang Bing-Zhong. Theoretical analysis of wide-angle metamaterial absorbers based on equivalent medium theory. Acta Physica Sinica, 2020, 69(5): 054202. doi: 10.7498/aps.69.20191732
    [2] Zheng Hong-Xia, Zhou Xin, Han Ying, Yu Xin-Ning, Liu Shi-Yang. Rectifying electromagnetic waves by a single-layer dielectric particle array based on dual-particle coupling. Acta Physica Sinica, 2015, 64(22): 224201. doi: 10.7498/aps.64.224201
    [3] Geng Tao, Wang Yan, Wang Xin, Dong Xiang-Mei. Effective medium theory of two-dimensional photonic crystal for transverse electric mode beyond the long-wavelength limit. Acta Physica Sinica, 2015, 64(15): 154210. doi: 10.7498/aps.64.154210
    [4] Lin Hai-Xiao, Yu Xin-Ning, Liu Shi-Yang. Manipulation of electromagnetic wavefront based on zero index magnetic metamaterial. Acta Physica Sinica, 2015, 64(3): 034203. doi: 10.7498/aps.64.034203
    [5] Liu Xiao-Bo, Shi Hong-Yu, Chen Bo, Jiang Yan-Sheng, Xu Zhuo, Zhang An-Xue. Studies on the mechanism of refractive index gradient surface. Acta Physica Sinica, 2014, 63(21): 214201. doi: 10.7498/aps.63.214201
    [6] Zhou Jian-Hua, Li Dong-Hua, Zeng Yang-Su, Zhu Hong-Peng. Propagation properties of Gaussian beam in gradient negative index of refraction material. Acta Physica Sinica, 2014, 63(10): 104205. doi: 10.7498/aps.63.104205
    [7] Zhang Zheng, Xu Zhi-Mou, Sun Tang-You, He Jian, Xu Hai-Feng, Zhang Xue-Ming, Liu Shi-Yuan. The fabrication of the antireflective periodic nano-arrary structure on Si surface using nanoimprint lithography and the study on its properties. Acta Physica Sinica, 2013, 62(16): 168102. doi: 10.7498/aps.62.168102
    [8] Liang Rui-Bing, Sun Qi-Zhen, Wo Jiang-Hai, Liu De-Ming. Theoretical investigation on refractive index sensor basedon Bragg grating in micro/nanofiber. Acta Physica Sinica, 2011, 60(10): 104221. doi: 10.7498/aps.60.104221
    [9] Kang Guo-Guo, Tan Qiao-Feng, Chen Wei-Li, Li Qun-Qing, Jin Wei-Qi, Jin Guo-Fan. Design and fabrication of sub-wavelength metal wire-grid and its application to experimental study of polarimetric imaging. Acta Physica Sinica, 2011, 60(1): 014218. doi: 10.7498/aps.60.014218
    [10] Huang Yi-Hua, Jiang Dong-Liang, Zhang Jing-Xian, Lin Qing-Ling. Spectroscopic properties and Judd-Ofelt theory analysis of La, Nd codoped Y2O3 high refractivity transparent ceramics. Acta Physica Sinica, 2010, 59(1): 300-306. doi: 10.7498/aps.59.300
    [11] Zhou Cheng, Gao Yan-Xia, Wang Pei-Ji, Zhang Zhong, Li Ping. Theoretical analysis of second-harmonic conversion efficiency in negative-index materials. Acta Physica Sinica, 2009, 58(2): 914-918. doi: 10.7498/aps.58.914
    [12] Liu Yan-Fen, Liu Jing-Hui, Jia Cheng. Retarded modes of lateral ferromagnetic/ferromagnetic superlattice. Acta Physica Sinica, 2008, 57(3): 1897-1901. doi: 10.7498/aps.57.1897
    [13] Liu Shi-Yuan, Gu Hua-Yong, Zhang Chuan-Wei, Shen Hong-Wei. A fast algorithm for reflectivity calculation of micro/nano deep trench structures by corrected effective medium approximation. Acta Physica Sinica, 2008, 57(9): 5996-6001. doi: 10.7498/aps.57.5996
    [14] Shen Zi-Cai, Shao Jian-Da, Wang Ying-Jian, Fan Zheng-Xiu. Theoretical study of graded-index coatings prepared by glancing angle deposition. Acta Physica Sinica, 2005, 54(7): 3069-3074. doi: 10.7498/aps.54.3069
    [15] Xu Xin Hua, Cui Yi Ping. Theoretical analysis and numerical calculation for the transmission spectrum of long-period fiber gratings with a rectangular index modulation. Acta Physica Sinica, 2003, 52(1): 96-101. doi: 10.7498/aps.52.96
    [16] Liu Cheng-Yi, Deng Dong-Mei, Hu Wei, Guo Hong. . Acta Physica Sinica, 2002, 51(3): 524-526. doi: 10.7498/aps.51.524
    [17] ZHU PING, TANG JING-CHANG, HE JIANG-PING. MULTIPLE-SCATTING CLUSTER STUDIES OF SO2 ADSORBED ON Ag(110). Acta Physica Sinica, 2000, 49(8): 1632-1638. doi: 10.7498/aps.49.1632
    [18] Zhang Fei, Tang Jing-Chang, He Jiang-Peng, Wang Lei. . Acta Physica Sinica, 2000, 49(3): 570-576. doi: 10.7498/aps.49.570
    [19] TANG JING-CHANG, FU SONG-BAO, JI HONG, CHEN YI-BING. STRUCTURE DETERMINATION OF HCOO-Cu(110) BY MULTIPLE SCATTERING CLUSTER METHOD. Acta Physica Sinica, 1992, 41(6): 968-976. doi: 10.7498/aps.41.968
    [20] PAN XIAO-CHUAN, LIANG XIAO-LING, LI JIA-MING. QUANTUM DEFECT THEORY——THEORETICAL MULTIPLE-SCATTERING CALCULATIONS. Acta Physica Sinica, 1987, 36(4): 426-435. doi: 10.7498/aps.36.426
Metrics
  • Abstract views:  3921
  • PDF Downloads:  91
  • Cited By: 0
Publishing process
  • Received Date:  05 December 2021
  • Accepted Date:  27 March 2022
  • Available Online:  03 July 2022
  • Published Online:  20 July 2022

/

返回文章
返回
Baidu
map