Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Study on H plasma treatment enhanced p-GaN gate AlGaN/GaN HEMT with block layer

Huang Xing-Jie Xing Yan-Hui Yu Guo-Hao Song Liang Huang Rong Huang Zeng-Li Han Jun Zhang Bao-Shun Fan Ya-Ming

Citation:

Study on H plasma treatment enhanced p-GaN gate AlGaN/GaN HEMT with block layer

Huang Xing-Jie, Xing Yan-Hui, Yu Guo-Hao, Song Liang, Huang Rong, Huang Zeng-Li, Han Jun, Zhang Bao-Shun, Fan Ya-Ming
PDF
HTML
Get Citation
  • High electron mobility transistors(HEMTs)show tremendous potentials for high mobility, high breakdown voltage, low conduction, low power consumption, and occupy an important piece of the microelectronics field. The high-resistivity-cap-layer high electron mobility transistor (HRCL-HEMT) is a novel device structure. Based on the hole compensation mechanism, the p-GaN is converted into high resistance semiconductor material by hydrogen plasma implantation. Thus, the surface of the p-GaN layer will have a serious bombardment damage under the hydrogen plasma implantation. In practical work, it is also very challenging in the accurate controlling of the hydrogen injection rate, injection depth and injection uniformity. To achieve the required depth of injection, the injected hydrogen plasma is often more than the required dose or multiple injections times. The energy of hydrogen plasma plays a huge influence on the surface of the p-GaN layer.The leakage current will be generated on the device surface, which deteriorates the electrical performance of the device.In this work, to protect the surface of p-GaN layer, a 2-nm Al2O3 film is deposited on the surface of the p-GaN cap layer to reduce the implantation damage caused by hydrogen plasma treatment. The research shows that after the device deposited Al2O3 film prior to the hydrogen plasma treatment, the gate reverse leakage current is reduced by an order of magnitude, the ratio of ION to IOFF is increased by about 3 times. Meanwhile, the OFF-state breakdown voltage is increased from 410 V to 780 V. In addition, when the bias voltage is 400 V, the values of dynamic RON of devices A and B are 1.49 and 1.45 respectively, the device B shows a more stable dynamic performance. To analyze the gate leakage mechanism, a temperature-dependent current IG-VG testing is carried out, and it is found that the dominant mechanism of gate leakage current is two-dimensional variable range hopping (2D-VRH) at reverse gate voltage. The reason for reducing the gate reverse current is analyzed, and the Al2O3 film increases the activation energy of trap level and changes the surface states of HR-GaN; furthermore, the Al2O3 film blocks the injection of too much H plasma, thereby reducing the density of AlGaN barrier and channel trap states, and weakening the current collapse.
      Corresponding author: Xing Yan-Hui, xingyanhui@bjut.edu.cn ; Zhang Bao-Shun, bszhang2006@sinano.ac.cn
    • Funds: Project supported by the Youth Innovation Promotion Association of CAS (Grant No. 2020321), and the National Natural Science Foundation of China (Grant Nos. 61904192, 61731019, 61575008, 61775007); Beijing Natural Science Foundation (Grant No.4202010, 4172011).
    [1]

    Chen K J, Haberlen O, Lidow A, Tsai C L, Ueda T, Uemoto Y, Wu Y F 2017 IEEE T. Electron. Dev. 64 779Google Scholar

    [2]

    Efthymiou L, Longobardi G, Camuso G, Chien T, Chen M, Udrea F 2017 Appl. Phys. Lett. 110

    [3]

    Ambacher O, Foutz B, Smart J, et al. 2000 J. Appl. Phys. 87 334Google Scholar

    [4]

    Jones E A, Wang F, Costinett D 2016 IEEE J. Em. Sel. Top. P. 4 707

    [5]

    Hu X, Simin G, Yang J, Khan M A, Gaska R, Shur M S 2000 Electron. Lett. 36 753Google Scholar

    [6]

    Uemoto Y, Hikita M, Ueno H, et al. 2007 IEEE T. Electron. Dev. 54 3393Google Scholar

    [7]

    Cai Y, Zhou Y G, Chen K J, Lau K M 2005 IEEE Electr. Device L. 26 435Google Scholar

    [8]

    Tang Z K, Jiang Q M, Lu Y Y, Huang S, Yang S, Tang X, Chen K J 2013 IEEE Electr. Device L. 34 1373Google Scholar

    [9]

    Saito W, Takada Y, Kuraguchi M, Tsuda K, Omura I 2006 IEEE T. Electron. Dev. 53 356Google Scholar

    [10]

    Fujii T, Tsuyukuchi N, Iwaya M, Kamiyama S, Amano H, Akasaki I 2006 Jpn. J. Appl. Phys. 2 45 L1048Google Scholar

    [11]

    Hwang I, Kim J, Choi H S, et al. 2013 IEEE Electr. Device L. 34 202Google Scholar

    [12]

    Tapajna M, Hilt O, Bahat-Treidel E, Wurfl J, Kuzmik J 2016 IEEE Electr. Device L. 37 385Google Scholar

    [13]

    Greco G, Iucolano F, Roccaforte F 2018 Mat. Sci. Semicon. Proc. 78 96Google Scholar

    [14]

    Hao R H, Fu K, Yu G H, et al. 2016 Appl. Phys. Lett. 109

    [15]

    Nakamura S, Iwasa N, Senoh M, Mukai T 1992 Jpn. J. Appl. Phys. 31 1258Google Scholar

    [16]

    Hao R H, Li W Y, Fu K, et al. 2017 IEEE Electr. Device L. 38 1567Google Scholar

    [17]

    Mi M H, Ma X H, Yang L, Bin-Hou, Zhu J J, He Y L, Zhang M, Wu S, Hao Y 2017 Appl. Phys. Lett. 111

    [18]

    Hao R H, Xu N, Yu G H, Song L, Chen F, Zhao J, Deng X G, Li X, Cheng K, Fu K, Cai Y, Zhang X P, Zhang B S 2018 IEEE T. Electron. Dev. 65 1314Google Scholar

    [19]

    Xu N, Hao R H, Chen F, et al. 2018 Appl. Phys. Lett. 113

    [20]

    Chen Y H, Zhang K, Cao M Y, Zhao S L, Zhang J C, Ma X H, Hao Y 2014 Appl. Phys. Lett. 104

    [21]

    Chen X, Zhong Y Z, Zhou Y, et al. 2020 Appl. Phys. Lett. 117

    [22]

    Zhao S L, Hou B, Chen W W, Mi M H, Zheng J X, Zhang J C, Ma X H, Hao Y 2016 IEEE T. Power Electr. 31 1517

    [23]

    Zhang Z L, Yu G H, Zhang X D, et al. 2016 IEEE T. Electron. Dev. 63 731Google Scholar

    [24]

    Binari S C, Ikossi K, Roussos J A, et al. 2001 IEEE T. Electron. Dev. 48 465Google Scholar

    [25]

    Vetury R, Zhang N Q Q, Keller S, Mishra U K 2001 IEEE T. Electron. Dev. 48 560Google Scholar

    [26]

    Jiang H X, Lyu Q F, Zhu R Q, Xiang P, Cheng K, Lau K M 2021 IEEE T. Electron. Dev. 68 653Google Scholar

    [27]

    Zhu M H, Ma J, Nela L, Erine C, Matioli E 2019 IEEE Electr. Device L. 40 1289Google Scholar

    [28]

    Wei X, Zhang X D, Sun C, et al. 2021 IEEE T. Electron. Dev. 68 5041Google Scholar

    [29]

    Yang S, Tang Z K, Wong K Y, Lin Y S, Liu C, Lu Y Y, Huang S, Chen K J 2013 IEEE Electr. Device L 34 1497Google Scholar

  • 图 1  器件横截面示意图 (a)器件A; (b)器件B

    Figure 1.  Diagram of depicts schematic cross-sections of the devices: (a) Device A; (b) device B.

    图 2  器件的I-V特性 (a)器件的转移特性; (b) 器件的输出特征

    Figure 2.  I-V characteristics of all devices: (a) Transfer characteristics; (b) output characteristics.

    图 3  变温IG-VG特性 (a)器件A; (b)器件B

    Figure 3.  Temperature dependent IG-VG characteristics : (a) Device A; (b) device B.

    图 4  (a)从–1— –10 V器件A的$ \mathrm{l}\mathrm{n}\sigma $$ {(1000/T)}^{1/3} $的函数关系; (b)从–1 V— –10 V器件B的$ \mathrm{l}\mathrm{n}\sigma $$ {(1000/T)}^{1/3} $的函数关系; (c)从–1— –10 V器件A的$ \mathrm{l}\mathrm{n}\sigma $$ 1000/T $的函数关系; (d)从–1— –10 V器件B的$ \mathrm{l}\mathrm{n}\sigma $$ 1000/T $的函数关系; 点是实验值, 直线是拟合值

    Figure 4.  (a) $ \mathrm{l}\mathrm{n}\sigma $ of device A at VG from –1 V to –10 V as a function of $ {(1/T)}^{1/3} $; (b) $ \mathrm{l}\mathrm{n}\sigma $ of device B at VG from –1 V to –10 V as a function of $ {(1/T)}^{1/3} $; (c) $ \mathrm{l}\mathrm{n}\sigma $ of device A at VG from –1 V to –10 V as a function of $ 1000/T $; (d) $ \mathrm{l}\mathrm{n}\sigma $ of device B at VG from –1 V to –10 V as a function of $ 1000/T $; the point is experimental value and the fitted value is a straight line.

    图 5  (a)器件A和器件B的关态击穿电压对比; (b)器件A和器件B的电流崩塌对比; (c)纵向元素分布SIMS测试结果

    Figure 5.  (a) OFF-state breakdown characteristics of device A and device B with substrate grounded; (b) normalized dynamic RON with various values of OFF-state VDS stress from 1 V to 400 V of device A and device B; (c) vertical anatomy of H distribution.

    图 6  器件2D-VRH泄漏电流机制示意图和H等离子注入示意图 (a)器件A; (b)器件B

    Figure 6.  Schematic of the Two-dimensional variable range hopping (2D-VRH) model for devices, and Hydrogen plasma treatment for (a) device A and (b) device B.

    表 1  在不同栅极电压下表面缺陷能级Ea

    Table 1.  Surface defect level Ea at different gate voltages.

    器件Ea/meV栅极电压/V
    –10–9–8–7–6–5–4–3–2–1
    A308321332343353366385404433466
    B382402422439455470489511524531
    DownLoad: CSV
    Baidu
  • [1]

    Chen K J, Haberlen O, Lidow A, Tsai C L, Ueda T, Uemoto Y, Wu Y F 2017 IEEE T. Electron. Dev. 64 779Google Scholar

    [2]

    Efthymiou L, Longobardi G, Camuso G, Chien T, Chen M, Udrea F 2017 Appl. Phys. Lett. 110

    [3]

    Ambacher O, Foutz B, Smart J, et al. 2000 J. Appl. Phys. 87 334Google Scholar

    [4]

    Jones E A, Wang F, Costinett D 2016 IEEE J. Em. Sel. Top. P. 4 707

    [5]

    Hu X, Simin G, Yang J, Khan M A, Gaska R, Shur M S 2000 Electron. Lett. 36 753Google Scholar

    [6]

    Uemoto Y, Hikita M, Ueno H, et al. 2007 IEEE T. Electron. Dev. 54 3393Google Scholar

    [7]

    Cai Y, Zhou Y G, Chen K J, Lau K M 2005 IEEE Electr. Device L. 26 435Google Scholar

    [8]

    Tang Z K, Jiang Q M, Lu Y Y, Huang S, Yang S, Tang X, Chen K J 2013 IEEE Electr. Device L. 34 1373Google Scholar

    [9]

    Saito W, Takada Y, Kuraguchi M, Tsuda K, Omura I 2006 IEEE T. Electron. Dev. 53 356Google Scholar

    [10]

    Fujii T, Tsuyukuchi N, Iwaya M, Kamiyama S, Amano H, Akasaki I 2006 Jpn. J. Appl. Phys. 2 45 L1048Google Scholar

    [11]

    Hwang I, Kim J, Choi H S, et al. 2013 IEEE Electr. Device L. 34 202Google Scholar

    [12]

    Tapajna M, Hilt O, Bahat-Treidel E, Wurfl J, Kuzmik J 2016 IEEE Electr. Device L. 37 385Google Scholar

    [13]

    Greco G, Iucolano F, Roccaforte F 2018 Mat. Sci. Semicon. Proc. 78 96Google Scholar

    [14]

    Hao R H, Fu K, Yu G H, et al. 2016 Appl. Phys. Lett. 109

    [15]

    Nakamura S, Iwasa N, Senoh M, Mukai T 1992 Jpn. J. Appl. Phys. 31 1258Google Scholar

    [16]

    Hao R H, Li W Y, Fu K, et al. 2017 IEEE Electr. Device L. 38 1567Google Scholar

    [17]

    Mi M H, Ma X H, Yang L, Bin-Hou, Zhu J J, He Y L, Zhang M, Wu S, Hao Y 2017 Appl. Phys. Lett. 111

    [18]

    Hao R H, Xu N, Yu G H, Song L, Chen F, Zhao J, Deng X G, Li X, Cheng K, Fu K, Cai Y, Zhang X P, Zhang B S 2018 IEEE T. Electron. Dev. 65 1314Google Scholar

    [19]

    Xu N, Hao R H, Chen F, et al. 2018 Appl. Phys. Lett. 113

    [20]

    Chen Y H, Zhang K, Cao M Y, Zhao S L, Zhang J C, Ma X H, Hao Y 2014 Appl. Phys. Lett. 104

    [21]

    Chen X, Zhong Y Z, Zhou Y, et al. 2020 Appl. Phys. Lett. 117

    [22]

    Zhao S L, Hou B, Chen W W, Mi M H, Zheng J X, Zhang J C, Ma X H, Hao Y 2016 IEEE T. Power Electr. 31 1517

    [23]

    Zhang Z L, Yu G H, Zhang X D, et al. 2016 IEEE T. Electron. Dev. 63 731Google Scholar

    [24]

    Binari S C, Ikossi K, Roussos J A, et al. 2001 IEEE T. Electron. Dev. 48 465Google Scholar

    [25]

    Vetury R, Zhang N Q Q, Keller S, Mishra U K 2001 IEEE T. Electron. Dev. 48 560Google Scholar

    [26]

    Jiang H X, Lyu Q F, Zhu R Q, Xiang P, Cheng K, Lau K M 2021 IEEE T. Electron. Dev. 68 653Google Scholar

    [27]

    Zhu M H, Ma J, Nela L, Erine C, Matioli E 2019 IEEE Electr. Device L. 40 1289Google Scholar

    [28]

    Wei X, Zhang X D, Sun C, et al. 2021 IEEE T. Electron. Dev. 68 5041Google Scholar

    [29]

    Yang S, Tang Z K, Wong K Y, Lin Y S, Liu C, Lu Y Y, Huang S, Chen K J 2013 IEEE Electr. Device L 34 1497Google Scholar

  • [1] Liang Qi, Wang Ru-Zhi, Yang Meng-Qi, Wang Chang-Hao, Liu Jin-Wei. Preparing GaN nanowires on Al2O3 substrate without catalyst and its optical property. Acta Physica Sinica, 2020, 69(8): 087801. doi: 10.7498/aps.69.20191923
    [2] Deng Xiao-Qing, Deng Lian-Wen, He Yi-Ni, Liao Cong-Wei, Huang Sheng-Xiang, Luo Heng. Leakage current model of InGaZnO thin film transistor. Acta Physica Sinica, 2019, 68(5): 057302. doi: 10.7498/aps.68.20182088
    [3] Li Shu-Ping, Zhang Zhi-Li, Fu Kai, Yu Guo-Hao, Cai Yong, Zhang Bao-Shun. High-performance AlGaN/GaN MIS-HEMT device based on in situ plasma nitriding and low power chemical vapor deposition Si3N4 gate dielectrics. Acta Physica Sinica, 2017, 66(19): 197301. doi: 10.7498/aps.66.197301
    [4] Yan Da-Wei, Li Li-Sha, Jiao Jin-Ping, Huang Hong-Juan, Ren Jian, Gu Xiao-Feng. Capacitance characteristics of atomic layer deposited Al2O3/n-GaN MOS structure. Acta Physica Sinica, 2013, 62(19): 197203. doi: 10.7498/aps.62.197203
    [5] Zheng Yu-Long, Zhen Cong-Mian, Ma Li, Li Xiu-Ling, Pan Cheng-Fu, Hou Deng-Lu. Room-temperature ferromagnetism observed in Si-Al2O3 composite film. Acta Physica Sinica, 2011, 60(11): 117502. doi: 10.7498/aps.60.117502
    [6] Liao Guo-Jin, Luo Hong, Yan Shao-Feng, Dai Xiao-Chun, Chen Ming. Determination of the optical constants of the magnetron sputtered aluminum oxide films from the transmission spectra. Acta Physica Sinica, 2011, 60(3): 034201. doi: 10.7498/aps.60.034201
    [7] Wang Lin, Hu Wei-Da, Chen Xiao-Shuang, Lu Wei. Study on mechanism of current collapse and knee voltage drift for AlGaN/GaN HEMTs. Acta Physica Sinica, 2010, 59(8): 5730-5737. doi: 10.7498/aps.59.5730
    [8] Chen Yi-Feng, Chen Xi-Meng, Lou Feng-Jun, Xu Jin-Zhang, Shao Jian-Xiong, Sun Guang-Zhi, Wang Jun, Xi Fa-Yuan, Yin Yong-Zhi, Wang Xing-An, Xu Jun-Kui, Cui Ying, Ding Bao-Wei. Guiding of 60 keV O+ ions through Al2O3 nanocapillaries with two different diameters. Acta Physica Sinica, 2010, 59(1): 222-226. doi: 10.7498/aps.59.222
    [9] Ding Guo-Jian, Guo Li-Wei, Xing Zhi-Gang, Chen Yao, Xu Pei-Qiang, Jia Hai-Qiang, Zhou Jun-Ming, Chen Hong. Growth and character stics of AlGaN/GaN HEMT structures with AlN/GaN superlattices as barrier layers. Acta Physica Sinica, 2010, 59(8): 5724-5729. doi: 10.7498/aps.59.5724
    [10] Liu Lin-Jie, Yue Yuan-Zheng, Zhang Jin-Cheng, Ma Xiao-Hua, Dong Zuo-Dian, Hao Yue. Temperature characteristics of AlGaN/GaN MOS-HEMT with Al2O3 gate dielectric. Acta Physica Sinica, 2009, 58(1): 536-540. doi: 10.7498/aps.58.536
    [11] Li Sheng-Tao, Cheng Peng-Fei, Li Jian-Ying. Thermal stimulated current in sandwiched Al2O3 single crystal samples. Acta Physica Sinica, 2008, 57(12): 7783-7788. doi: 10.7498/aps.57.7783
    [12] Xi Guang-Yi, Ren Fan, Hao Zhi-Biao, Wang Lai, Li Hong-Tao, Jiang Yang, Zhao Wei, Han Yan-Jun, Luo Yi. Influence of pit defects on AlGaN surface and dislocation defects in GaN buffer layer on current collapse of AlGaN/GaN HEMTs. Acta Physica Sinica, 2008, 57(11): 7238-7243. doi: 10.7498/aps.57.7238
    [13] Wei Wei, Lin Ruo-Bing, Feng Qian, Hao Yue. Current collapse mechanism of field-plated AlGaN/GaN HEMTs. Acta Physica Sinica, 2008, 57(1): 467-471. doi: 10.7498/aps.57.467
    [14] Lü Ling, Gong Xin, Hao Yue. Properties of p-type GaN etched by inductively coupled plasma and their improvement. Acta Physica Sinica, 2008, 57(2): 1128-1132. doi: 10.7498/aps.57.1128
    [15] Feng Qian, Hao Yue, Yue Yuan-Zheng. Study of AlGaN/GaN MOSHEMT device with Al2O3 insulating film. Acta Physica Sinica, 2008, 57(3): 1886-1890. doi: 10.7498/aps.57.1886
    [16] Hao Yue, Han Xin-Wei, Zhang Jin-Cheng, Zhang Jin-Feng. Current slump mechanism and its physical model of AlGaN/GaN HEMTs under DC bias. Acta Physica Sinica, 2006, 55(7): 3622-3628. doi: 10.7498/aps.55.3622
    [17] Gu Wei-Chao, Shen De-Jiu, Wang Yu-Lin, Chen Guang-Liang, Feng Wen-Ran, Zhang Gu-Ling, Liu Chi-Zi, Yang Si-Ze. Preparation of Al2O3 ceramic coating by electrolytic plasma processing and its properties. Acta Physica Sinica, 2005, 54(7): 3263-3267. doi: 10.7498/aps.54.3263
    [18] Guo De-Feng, Geng Wei-Gang, Lan Wei, Huang Chun-Ming, Wang Yin-Yue. Fabrication and properties of the Y-doped Al2O3 high-k gate dielectric films. Acta Physica Sinica, 2005, 54(12): 5901-5906. doi: 10.7498/aps.54.5901
    [19] Fang Zhi-Jun, Xia Yi-Ben, Wang Lin-Jun, Zhang Wei-Li, Ma Zhe-Guo, Zhang Ming-Long. Study of the stress observed in diamond films on carbon-implanted alumina surfaces. Acta Physica Sinica, 2003, 52(4): 1028-1033. doi: 10.7498/aps.52.1028
    [20] JIN TONG-ZHENG, HAN SHI-YING, SUI YUN-XIA. THE ELECTRON PARAMAGNETIC RESONANCE STUDY OF Fe ION IN α-Al2O3 SINGLE CRYSTAL. Acta Physica Sinica, 1988, 37(1): 147-151. doi: 10.7498/aps.37.147
Metrics
  • Abstract views:  5702
  • PDF Downloads:  194
  • Cited By: 0
Publishing process
  • Received Date:  28 November 2021
  • Accepted Date:  21 January 2022
  • Available Online:  10 February 2022
  • Published Online:  20 May 2022

/

返回文章
返回
Baidu
map