Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Real-time monitoring of high intensity focused ultrasound focal damage based on transducer driving signal

Qian Jun Xie Wei Zhou Xiao-Wei Tan Jian-Wen Wang Zhi-Biao Du Yong-Hong Li Yan-Hao

Citation:

Real-time monitoring of high intensity focused ultrasound focal damage based on transducer driving signal

Qian Jun, Xie Wei, Zhou Xiao-Wei, Tan Jian-Wen, Wang Zhi-Biao, Du Yong-Hong, Li Yan-Hao
cstr: 32037.14.aps.71.20211443
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Real-time monitoring of high intensity focused ultrasound (HIFU) focal region is a key problem in clinical treatment of focused ultrasound. At present, the change of strong echo in B-ultrasound image is often used in clinical practice to monitor tissue damage in the focal area. However, the strong echo in B-ultrasound image is mostly related to cavitation and boiling bubbles in the focal area, which cannot monitor the treatment status accurately or in real time. In the HIFU treatment, the focal area tissue will be accompanied by changes in temperature, cavitation, boiling, and tissue characteristics. The acoustic load on the surface of the transducer is also constantly changing. To solve this problem, a real-time detection platform of transducer voltage and current is built in this work, which can sense the change of focal area tissue state by measuring the electrical parameters of the transducer. The experimental results show that the stability of the phase difference of the transducer driving signal will be different (the fluctuation amplitude will be different) when different media are placed on the surface of the transducer to change the acoustic load on the surface of the transducer. The fluctuation amplitude of the phase difference of the driving signal will be larger than that in the water when the iron plate is placed in the focal plane. However, the phase fluctuation amplitude will be much smaller than that in the water where the beef liver is placed. This shows that different acoustic loads can cause the electrical parameters of the transducer to change. The isolated bovine liver tissue is used as the HIFU irradiation object, and the results of the phase difference change are compared with the results of the isolated bovine liver tissue damage. The experimental results show that the phase of the transducer voltage and current will change from relatively stable to large fluctuations during the HIFU irradiation. At this time, obvious damage can be seen in the focal region when the irradiation is stopped, and the grayscale of B-ultrasound image has no significant change. In addition, when the cavitation occurs in the focal region, the fluctuation amplitude and range will turn larger. The damage area of the lower focal area under the monitoring method is smaller than that under B-ultrasonic monitoring, and the over input of radiation dose can be avoided. This method can provide a new research scheme and means for HIFU focal area tissue damage monitoring.
      Corresponding author: Li Yan-Hao, liyanhao@cqmu.edu.cn
    • Funds: Project supported by the Postdoctoral Science Foundation of the Special Program for Basic Research and Frontier Exploration of Chongqing, China (Grant No. cstc2019jcyj-bshX0075).
    [1]

    Fry W J, Fry F J 1960 IRE Trans. Med. Electron. 3 166Google Scholar

    [2]

    Bailey M R, Khokhlova V A, Sapozhnikov O A, Kargl S G, Crum L A 2003 Acoust. Phys. 49 369Google Scholar

    [3]

    Jenne J W, Preusser T, Günther M 2012 Z. Med. Phys. 22 311Google Scholar

    [4]

    Jeng C J, Ou K Y, Long C Y, Chuang L, Ker C 2020 Taiwan. J. Obstet. Gyne. 59 865Google Scholar

    [5]

    Peek M C L, Ahmed M, Napoli A, Ten Haken B, Mcwilliams S, Usiskin S I, Pinder S E, Van Hemelrijck M, Douek M 2015 Br. J. Surg. 102 873Google Scholar

    [6]

    Schmid F A, Schindele D, Mortezavi A, Spitznagela T, Sulsera T, Schostakb M, Eberlia D 2020 Urol. Oncol. -Semin. Ori. 38 225Google Scholar

    [7]

    Quadri S A, Waqas M, Khan I, Khan M A, Suriya S S, Farooqui M, Fiani B 2018 Neurosurg. Focus 44 1Google Scholar

    [8]

    Charrel T, Aptel F, Birer A, Chavrier F, Romano F, Chapelon J Y, Denid P, Lafon C 2011 Ultrasound Med. Biol. 37 742Google Scholar

    [9]

    Dogra V S, Zhang M, Bhatt S 2009 Ultrasound Clinics 4 307

    [10]

    Rabkin B A, Zderic V, Crum L A, Vaezy S 2016 Ultrasound Med. Biol. 32 1721

    [11]

    Adams C, McLaughlan J R, Carpenter T M, Freear S 2019 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 67 239Google Scholar

    [12]

    Thomas C R, Farny C H, Wu T, Holt G, Roy R A 2006 AIP Conference Proceedings 829 293Google Scholar

    [13]

    Karaböce B, Gülmez Y, Bilgiç E, et al. 2014 IEEE International Symposium on Medical Measurements and Applications Lisboa, Portugal, June 11−12, 2014 p1

    [14]

    Bentley J P 2005 Principles of Measurement Systems (4th Ed.) (London: Pearson Education) pp427−436

    [15]

    郭林伟, 林书玉, 许龙 2010 陕西师范大学学报(自然科学版) 38 39Google Scholar

    Guo L W, Lin S Y, Xu L 2010 J. Shaanxi Normal Univ. (Nat. Sci. Ed.) 38 39Google Scholar

    [16]

    曹奕涛, 淳莉, 张宏军, 赵洪峰, 周小川 2019 空天防御 2 47Google Scholar

    Cao Y T, Chun L, Zhang H J, Zhao X F, Zhou X C 2019 Air Space Defense 2 47Google Scholar

    [17]

    曾玲, 陈伟, 陶金 2017 电子测量技术 40 71Google Scholar

    Ceng L, Chen W, Tao J 2017 Electron. Meas. Technol 40 71Google Scholar

    [18]

    Liu J F, Liu J Y, Zhang T T, Li J C 2009 Seventh Annual Communication Networks and Services Research Conference Moncton, NB, Canada, May 11−13, 2009 p440

    [19]

    Zhang L, Wu X 2006 Digital Signal Processing 16 682Google Scholar

    [20]

    Lai X, Torp H 1999 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 46 277Google Scholar

    [21]

    Zhang S, Wan M, Zhong H, Xu C, Liao Z Z, Liu H Q, Wang S P 2009 Ultrasound Med. Biol. 35 1828Google Scholar

    [22]

    Bornmann P, Hemsel T, Sextro W, Maeda T, Morita T 2012 IEEE International Ultrasonics Symposium Dresden, Germany, Oct. 7−10, 2012 p1141

    [23]

    Tu J, Matula T J, Brayman A A, Crum L A 2006 Ultrasound Med. Biol. 32 281Google Scholar

    [24]

    Xu H, He L B, Zhong B, Qiu J M, Tu J 2019 Ultrasonics Sonochemistry 56 77Google Scholar

    [25]

    Saalbach K A, Twiefel J, Wallaschek J 2019 Ultrasonics 94 401Google Scholar

    [26]

    Tan J W, Liao R J, Wang H, et al. 2011 International Symposium on Bioelectronics and Bioinformations Suzhou, China, November 3−5, 2011 p279

  • 图 1  (a) 压电换能器等效电路模型; (b) 简化等效电路模型; (c) LC匹配电路

    Figure 1.  (a) Equivalent circuit model of piezoelectric transducer; (b) simplified equivalent circuit model; (c) LC matching circuit.

    图 2  实验原理图

    Figure 2.  Diagram of experimental schematic (Pico, picoscope)

    图 3  数据采集与可视化界面

    Figure 3.  Data acquisition and visualization interface.

    图 4  抛物线插值原理示意图

    Figure 4.  Schematic diagram of parabolic interpolation principle.

    图 5  不同声负载下相位变化趋势图 (a) 焦域平面放入铁板后相位变化趋势图; (b) 铁板在焦域平面上下缓慢平移时相位变化趋势

    Figure 5.  Phase trend diagram under different acoustic loads: (a) Phase trend diagram of focal area plane after placing iron plate; (b) phase change trend of iron plate moving slowly up and down the focal plane.

    图 6  放入牛肝前后换能器驱动信号相位变化

    Figure 6.  Phase change of transducer drive signal before and after liver insertion.

    图 7  HIFU辐照中(无空化时)相位变化趋势 (a) HIFU辐照过程中相位变化过程; (b) 损伤前与损伤后相位波动对比; (c) 辐照期间每回合的相位标准差变化

    Figure 7.  Phase change trend in HIFU irradiation (without cavitation): (a) Phase change process during HIFU irradiation; (b) comparison of phase fluctuation before and after damage; (c) phase standard deviation change per turn during irradiation.

    图 8  牛肝损伤 (a) 未空化时; (b) 空化时

    Figure 8.  Bovine liver damage: (a) without cavitation; (b) cavitation.

    图 9  HIFU辐照中出现空化时相位变化趋势 (a) HIFU辐照过程中相位变化过程; (b) 损伤前与损伤后相位波动对比; (c) 辐照期间每回合的相位标准差变化

    Figure 9.  Phase change trend of cavitation appears in HIFU irradiation: (a) Phase change process during HIFU irradiation; (b) comparison of phase fluctuation before and after damage; (c) phase standard deviation change per turn during irradiation.

    图 10  HIFU治疗中焦域出现坏死前与坏死后相位标准差对比

    Figure 10.  Comparison of pre-necrotic and post-necrotic phase standard deviation in the focal area during HIFU treatment.

    图 11  该系统所检测出的离体牛肝组织损伤图

    Figure 11.  Images of isolated liver tissue damage detected by the system.

    图 12  驱动电压信号频谱与噪声能量 (a) 频谱; (b) HIFU治疗中驱动信号背景噪声变化

    Figure 12.  Drive voltage signal spectrum and noise energy: (a) Spectrum; (b) background noise changes of driving signal during HIFU therapy.

    Baidu
  • [1]

    Fry W J, Fry F J 1960 IRE Trans. Med. Electron. 3 166Google Scholar

    [2]

    Bailey M R, Khokhlova V A, Sapozhnikov O A, Kargl S G, Crum L A 2003 Acoust. Phys. 49 369Google Scholar

    [3]

    Jenne J W, Preusser T, Günther M 2012 Z. Med. Phys. 22 311Google Scholar

    [4]

    Jeng C J, Ou K Y, Long C Y, Chuang L, Ker C 2020 Taiwan. J. Obstet. Gyne. 59 865Google Scholar

    [5]

    Peek M C L, Ahmed M, Napoli A, Ten Haken B, Mcwilliams S, Usiskin S I, Pinder S E, Van Hemelrijck M, Douek M 2015 Br. J. Surg. 102 873Google Scholar

    [6]

    Schmid F A, Schindele D, Mortezavi A, Spitznagela T, Sulsera T, Schostakb M, Eberlia D 2020 Urol. Oncol. -Semin. Ori. 38 225Google Scholar

    [7]

    Quadri S A, Waqas M, Khan I, Khan M A, Suriya S S, Farooqui M, Fiani B 2018 Neurosurg. Focus 44 1Google Scholar

    [8]

    Charrel T, Aptel F, Birer A, Chavrier F, Romano F, Chapelon J Y, Denid P, Lafon C 2011 Ultrasound Med. Biol. 37 742Google Scholar

    [9]

    Dogra V S, Zhang M, Bhatt S 2009 Ultrasound Clinics 4 307

    [10]

    Rabkin B A, Zderic V, Crum L A, Vaezy S 2016 Ultrasound Med. Biol. 32 1721

    [11]

    Adams C, McLaughlan J R, Carpenter T M, Freear S 2019 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 67 239Google Scholar

    [12]

    Thomas C R, Farny C H, Wu T, Holt G, Roy R A 2006 AIP Conference Proceedings 829 293Google Scholar

    [13]

    Karaböce B, Gülmez Y, Bilgiç E, et al. 2014 IEEE International Symposium on Medical Measurements and Applications Lisboa, Portugal, June 11−12, 2014 p1

    [14]

    Bentley J P 2005 Principles of Measurement Systems (4th Ed.) (London: Pearson Education) pp427−436

    [15]

    郭林伟, 林书玉, 许龙 2010 陕西师范大学学报(自然科学版) 38 39Google Scholar

    Guo L W, Lin S Y, Xu L 2010 J. Shaanxi Normal Univ. (Nat. Sci. Ed.) 38 39Google Scholar

    [16]

    曹奕涛, 淳莉, 张宏军, 赵洪峰, 周小川 2019 空天防御 2 47Google Scholar

    Cao Y T, Chun L, Zhang H J, Zhao X F, Zhou X C 2019 Air Space Defense 2 47Google Scholar

    [17]

    曾玲, 陈伟, 陶金 2017 电子测量技术 40 71Google Scholar

    Ceng L, Chen W, Tao J 2017 Electron. Meas. Technol 40 71Google Scholar

    [18]

    Liu J F, Liu J Y, Zhang T T, Li J C 2009 Seventh Annual Communication Networks and Services Research Conference Moncton, NB, Canada, May 11−13, 2009 p440

    [19]

    Zhang L, Wu X 2006 Digital Signal Processing 16 682Google Scholar

    [20]

    Lai X, Torp H 1999 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 46 277Google Scholar

    [21]

    Zhang S, Wan M, Zhong H, Xu C, Liao Z Z, Liu H Q, Wang S P 2009 Ultrasound Med. Biol. 35 1828Google Scholar

    [22]

    Bornmann P, Hemsel T, Sextro W, Maeda T, Morita T 2012 IEEE International Ultrasonics Symposium Dresden, Germany, Oct. 7−10, 2012 p1141

    [23]

    Tu J, Matula T J, Brayman A A, Crum L A 2006 Ultrasound Med. Biol. 32 281Google Scholar

    [24]

    Xu H, He L B, Zhong B, Qiu J M, Tu J 2019 Ultrasonics Sonochemistry 56 77Google Scholar

    [25]

    Saalbach K A, Twiefel J, Wallaschek J 2019 Ultrasonics 94 401Google Scholar

    [26]

    Tan J W, Liao R J, Wang H, et al. 2011 International Symposium on Bioelectronics and Bioinformations Suzhou, China, November 3−5, 2011 p279

Metrics
  • Abstract views:  8206
  • PDF Downloads:  143
  • Cited By: 0
Publishing process
  • Received Date:  05 August 2021
  • Accepted Date:  13 September 2021
  • Available Online:  19 January 2022
  • Published Online:  05 February 2022
  • /

    返回文章
    返回
    Baidu
    map