搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

利用扩散场信息的超声兰姆波全聚焦成像

张海燕 徐梦云 张辉 朱文发 柴晓冬

引用本文:
Citation:

利用扩散场信息的超声兰姆波全聚焦成像

张海燕, 徐梦云, 张辉, 朱文发, 柴晓冬

Full focal imaging of ultrasonic Lamb waves using diffuse field information

Zhang Hai-Yan, Xu Meng-Yun, Zhang Hui, Zhu Wen-Fa, Chai Xiao-Dong
PDF
导出引用
  • 利用兰姆波的扩散场信号,实现了距离传感器较近缺陷的全聚焦成像.通过两传感器接收的扩散场全矩阵信号进行互相关,恢复出两传感器之间的格林函数响应,重建新的全矩阵.该重建全矩阵削弱了直接耦合采集响应信号中存在的早期饱和非线性效应信号,恢复了被遮盖的近距离缺陷散射信号.在含缺陷的各向同性铝板中激发兰姆波,重建信号的早期信息与直接俘获信号的后期信息相结合形成混合全矩阵,结合全聚焦成像,优化成像效果.所提方法为薄板类结构中距离传感器较近缺陷的兰姆波无损检测提供了理论指导.
    In this paper, a method is presented in which that the diffuse field information of Lamb waves is used to realize the full focal imaging of the defect that is near the transducer array. The near distance means that the defect is located in the near field of ultrasonic phased array and satisfies the near field calculation formula. Near field acoustic information of the defect is obscured by the nonlinear effects of early time saturation present in a directly acquired ultrasonic inspection. The approach proposed here is to recover near filed information through cross-correlation of diffuse fields. The diffuse field is generated through multiple scattering and reflection effects after sufficiently long time transmission of ultrasonic signal in a bounded medium. The near field information is implicitly contained throughout the diffuse field. By cross-correlating the diffuse fields of ultrasonic responses recorded at two monitoring points, the Green's functions between the two points is recovered and the direct response between them is obtained. This idea is applied to the full matrix capture of ultrasonic phased array in which the full matrix is formed by sequential acquisition of responses for each transmitter-receiver pair. A virtual array of emitters and receivers is therefore established. Typically, phase delays are used in post-processing to achieve advanced imaging. Here an undelayed full matrix of inter-element responses is reconstructed through cross-correlation of a later time diffuse full matrix. In order to evaluate the applicability of the method for ultrasonic non-destructive testing, the process of full matrix reconstruction is demonstrated experimentally on an aluminium plate containing the near field defect. Combining the full focal imaging, it is shown that a hybrid full matrix formed through a temporally weighted sum of coherent and reconstructed matrices reduces the background noise and allows the effective imaging of near field defect by direct contact experimental measurements. However, the near field defect is hidden by the region of artificial noise in conventional coherent capture images. The proposed imaging method presents a theoretical guidance for detecting and imaging near field defect in plate-like configurations by using the Lamb wave nondestructive testing method.
      通信作者: 张海燕, hyzh@shu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11674214,11474195,11874255,51478258)资助的课题.
      Corresponding author: Zhang Hai-Yan, hyzh@shu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11674214, 11474195, 11874255, 51478258).
    [1]

    Holmes C, Drinkwater B W, Wilcox P D 2004 Insight 46 677

    [2]

    Holmes C, Drinkwater B W, Wilcox P D 2008 Ultrasonics 48 636

    [3]

    Jiao J P, Chang Y, Sun X R, He C F, Wu B 2015 J. Nanjing Univ. 51 72 (in Chinese) [焦敬品, 常予, 孙欣荣, 何存富, 吴斌 2015 南京大学学报 51 72]

    [4]

    Hunter A J, Drinkwater B W, Wilcox P D 2008 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 55 2450

    [5]

    Labyed Y, Huang L 2012 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59 2186

    [6]

    Poli P, Pedersen H, Campillo M 2012 Geophys. J. Int. 188 549

    [7]

    Froment B, Campillo M, Roux P 2011 Compt. Rend. Geosci. 343 623

    [8]

    Chi J, Li X L, Gao D Z, Wang H Z, Wang N 2017 Acta Phys. Sin. 66 194304 (in Chinese) [迟静, 李小雷, 高大治, 王好忠, 王宁 2017 66 194304]

    [9]

    Liu C X, Cheng C F, Ren X R, Liu M, Teng S Y, Xu Z Z 2004 Acta Phys. Sin. 53 427 (in Chinese) [刘春香, 程传福, 任晓荣, 刘曼, 滕树云, 徐至展 2004 53 427]

    [10]

    Potter J N, Wilcox P D, Croxford A J 2018 Ultrasonics 82 44

    [11]

    Potter J N, Croxford A J, Wilcox P D 2014 Phys. Rev. Lett. 113 144301

    [12]

    Weaver R, Lobkis O 2002 Ultrasonics 40 435

    [13]

    Snieder R, Slob E, Wapenaar K 2010 New J. Phys. 12 063013

    [14]

    Chehami L, Moulin E, Rosny J D, Prada C, Matar O B, Benmeddour F, Assaad J 2014 J. Appl. Phys. 115 104901

    [15]

    Sun F, Zeng Z M, Jin S J, Chen S L 2013 J. Sys. Simul. 25 1108 (in Chinese) [孙芳, 曾周末, 靳世久, 陈世利 2013 系统仿真学报 25 1108]

    [16]

    Li G F, Li J, Gao D Z, Wang N 2016 Acta Acust. 41 49 (in Chinese) [李国富, 黎洁, 高大治, 王宁 2016 声学学报 41 49]

    [17]

    Yang Y, Xiao L, Qu W Z, Lu Y 2017 Ultrasonics 81 187

    [18]

    Li J, Li G F, Gao D Z, Wang N 2017 Acta Acust. 42 143 (in Chinese) [黎洁, 李国富, 高大治, 王宁 2017 声学学报 42 143]

    [19]

    Zhang J, Drinkwater B W, Wilcox P D, Hunter A J 2010 NDT & E Int. 43 123

    [20]

    Zhang J, Drinkwater B W, Wilcox P D 2011 NDT & E Int. 44 361

    [21]

    Rodriguez S, Deschamps M, Castaings M, Ducasse E 2014 Ultrasonics 54 1880

  • [1]

    Holmes C, Drinkwater B W, Wilcox P D 2004 Insight 46 677

    [2]

    Holmes C, Drinkwater B W, Wilcox P D 2008 Ultrasonics 48 636

    [3]

    Jiao J P, Chang Y, Sun X R, He C F, Wu B 2015 J. Nanjing Univ. 51 72 (in Chinese) [焦敬品, 常予, 孙欣荣, 何存富, 吴斌 2015 南京大学学报 51 72]

    [4]

    Hunter A J, Drinkwater B W, Wilcox P D 2008 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 55 2450

    [5]

    Labyed Y, Huang L 2012 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59 2186

    [6]

    Poli P, Pedersen H, Campillo M 2012 Geophys. J. Int. 188 549

    [7]

    Froment B, Campillo M, Roux P 2011 Compt. Rend. Geosci. 343 623

    [8]

    Chi J, Li X L, Gao D Z, Wang H Z, Wang N 2017 Acta Phys. Sin. 66 194304 (in Chinese) [迟静, 李小雷, 高大治, 王好忠, 王宁 2017 66 194304]

    [9]

    Liu C X, Cheng C F, Ren X R, Liu M, Teng S Y, Xu Z Z 2004 Acta Phys. Sin. 53 427 (in Chinese) [刘春香, 程传福, 任晓荣, 刘曼, 滕树云, 徐至展 2004 53 427]

    [10]

    Potter J N, Wilcox P D, Croxford A J 2018 Ultrasonics 82 44

    [11]

    Potter J N, Croxford A J, Wilcox P D 2014 Phys. Rev. Lett. 113 144301

    [12]

    Weaver R, Lobkis O 2002 Ultrasonics 40 435

    [13]

    Snieder R, Slob E, Wapenaar K 2010 New J. Phys. 12 063013

    [14]

    Chehami L, Moulin E, Rosny J D, Prada C, Matar O B, Benmeddour F, Assaad J 2014 J. Appl. Phys. 115 104901

    [15]

    Sun F, Zeng Z M, Jin S J, Chen S L 2013 J. Sys. Simul. 25 1108 (in Chinese) [孙芳, 曾周末, 靳世久, 陈世利 2013 系统仿真学报 25 1108]

    [16]

    Li G F, Li J, Gao D Z, Wang N 2016 Acta Acust. 41 49 (in Chinese) [李国富, 黎洁, 高大治, 王宁 2016 声学学报 41 49]

    [17]

    Yang Y, Xiao L, Qu W Z, Lu Y 2017 Ultrasonics 81 187

    [18]

    Li J, Li G F, Gao D Z, Wang N 2017 Acta Acust. 42 143 (in Chinese) [黎洁, 李国富, 高大治, 王宁 2017 声学学报 42 143]

    [19]

    Zhang J, Drinkwater B W, Wilcox P D, Hunter A J 2010 NDT & E Int. 43 123

    [20]

    Zhang J, Drinkwater B W, Wilcox P D 2011 NDT & E Int. 44 361

    [21]

    Rodriguez S, Deschamps M, Castaings M, Ducasse E 2014 Ultrasonics 54 1880

  • [1] 李晓彬, 孙超, 刘雄厚. 浅海负跃层中利用互相关输出峰值迁移曲线的声源深度判别.  , 2022, 71(13): 134302. doi: 10.7498/aps.71.20211987
    [2] 钱骏, 谢伟, 周小伟, 谭坚文, 王智彪, 杜永洪, 李雁浩. 基于换能器驱动信号特征的高强度聚焦超声焦域损伤实时监测.  , 2022, 71(3): 037201. doi: 10.7498/aps.71.20211443
    [3] 钱骏, 李雁浩. 基于换能器驱动信号特征的HIFU焦域损伤实时监测研究.  , 2021, (): . doi: 10.7498/aps.70.20211443
    [4] 张海燕, 宋佳昕, 任燕, 朱琦, 马雪芬. 碳纤维增强复合材料褶皱缺陷的超声成像.  , 2021, 70(11): 114301. doi: 10.7498/aps.70.20210032
    [5] 李志旋, 岳明鑫, 周官群. 三维电磁扩散场数值模拟及磁化效应的影响.  , 2019, 68(3): 030201. doi: 10.7498/aps.68.20181567
    [6] 焦敬品, 李海平, 何存富, 吴斌, 薛岩. 基于反转路径差信号的兰姆波成像方法.  , 2019, 68(12): 124301. doi: 10.7498/aps.68.20190101
    [7] 彭博, 曲兴华, 张福民, 张天宇, 张铁犁, 刘晓旭, 谢阳. 飞秒脉冲非对称互相关绝对测距.  , 2018, 67(21): 210601. doi: 10.7498/aps.67.20181274
    [8] 倪龙, 陈晓. 基于频散补偿和分数阶微分的多模式兰姆波分离.  , 2018, 67(20): 204301. doi: 10.7498/aps.67.20180561
    [9] 张海燕, 杨杰, 范国鹏, 朱文发, 柴晓冬. 基于模式分离的兰姆波逆时偏移成像.  , 2017, 66(21): 214301. doi: 10.7498/aps.66.214301
    [10] 上官紫微, 沈毅, 李鹏, 丁志华. 扫频光学相干层析成像系统的波数校正与相位测量研究.  , 2016, 65(3): 034201. doi: 10.7498/aps.65.034201
    [11] 郑驰超, 彭虎, 韩志会. 互相关自适应加权的医学超声成像算法研究.  , 2014, 63(14): 148702. doi: 10.7498/aps.63.148702
    [12] 陈晓, 汪陈龙. 基于赛利斯模型和分数阶微分的兰姆波信号消噪.  , 2014, 63(18): 184301. doi: 10.7498/aps.63.184301
    [13] 秦鹏, 陈伟, 宋有建, 胡明列, 柴路, 王清月. 基于飞秒激光平衡光学互相关的任意长绝对距离测量.  , 2012, 61(24): 240601. doi: 10.7498/aps.61.240601
    [14] 丁红星, 沈中华, 李加, 祝雪丰, 倪晓武. 复合兰姆波声子晶体中超宽部分禁带.  , 2012, 61(19): 196301. doi: 10.7498/aps.61.196301
    [15] 黄良敏, 丁志华, 洪威, 王川. 相关多普勒光学层析成像.  , 2012, 61(2): 023401. doi: 10.7498/aps.61.023401
    [16] 张海燕, 曹亚萍, 于建波, 陈先华. 采用单个压电传感器的单模式兰姆波激发频率的选择.  , 2011, 60(11): 114301. doi: 10.7498/aps.60.114301
    [17] 张淳民, 刘宁, 吴福全. 偏振干涉成像光谱仪中格兰-泰勒棱镜全视场角透过率的分析与计算.  , 2010, 59(2): 949-957. doi: 10.7498/aps.59.949
    [18] 张海燕, 孙修立, 曹亚萍, 陈先华, 于建波. 基于时间反转理论的聚焦Lamb波结构损伤成像.  , 2010, 59(10): 7111-7119. doi: 10.7498/aps.59.7111
    [19] 武连文, 程乾生. 关于动力学互相关因子指数的注记.  , 2005, 54(7): 3027-3028. doi: 10.7498/aps.54.3027
    [20] 沈京玲, 张存林, 胡 颖, S. P. Jamison. 啁啾脉冲互相关法探测THz辐射.  , 2004, 53(7): 2212-2215. doi: 10.7498/aps.53.2212
计量
  • 文章访问数:  6646
  • PDF下载量:  89
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-07-01
  • 修回日期:  2018-09-17
  • 刊出日期:  2019-11-20

/

返回文章
返回
Baidu
map