Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Magnetic exchange interaction in two-dimensional lattice under generalized Bloch condition

Zhao Hong-Yan Jiang Ling-Zi Zhu Yan Pan Yan-Fei Fan Ji-Yu Ma Chun-Lan

Citation:

Magnetic exchange interaction in two-dimensional lattice under generalized Bloch condition

Zhao Hong-Yan, Jiang Ling-Zi, Zhu Yan, Pan Yan-Fei, Fan Ji-Yu, Ma Chun-Lan
PDF
HTML
Get Citation
  • Two-dimensional magnetic material which has been rapidly developed in recent years, has potential applications in developing spintronic devices. In order to understand the magnetic properties of two-dimensional magnetic materials, it is necessary to comprehend the magnetic interaction which is estimated by the exchange parameters between the magnetic atoms. The calculation of the magnetic exchange parameters is based on the first-principle. The commonly used method of determining the values of exchange parameters is energy-mapping. However, this method has some disadvantages. In this paper, the spin-spiral dispersion relationship is derived under the Heisenberg interaction and the Dzyaloshinskii-Moriya (DM) interaction through the generalized Bloch condition of three common two-dimensional magnetic structures: a tetragonal structure, a hexagonal structure in which the cell contains one magnetic atom, a hexagonal structure in which the cell contains two magnetic atoms. The magnetic exchange parameters of some materials are calculated through the first principle. These materials are MnB, VSe 2 MnSTe and Cr 2I 3Cl 3. Among them, the MnSTe and Cr 2I 3Cl 3 are two-dimensional Janus materials, which means that they have space-reversal symmetry broken, that is why there is DM interaction in the system.
      Corresponding author: Zhu Yan, yzhu@nuaa.edu.cn ; Ma Chun-Lan, wlxmcl@mail.usts.edu.cn
    [1]

    Bi C, Liu Y H, Newhouse-Illige T, Xu M, Rosales M, Freeland J W, Mryasov O, Zhang S F, Velthuis S G E, Wang W G 2014 Phys. Rev. Lett. 113 267202

    [2]

    Novoselov K S, Mishchenko A, Carvalho A, Castro Neto A H 2016 Science 353 9439Google Scholar

    [3]

    Wang Z, Gutiérrez-Lezama I, Ubrig N, Kroner M, Gibertini M, Taniguchi T, Watanabe K, Imamoğlu A, Giannini E, Morpurgo A F 2018 Nat. Commun. 9 2516Google Scholar

    [4]

    Hu C, Zhang D, Yan F G, Li Y C, Lv Q S, Zhu W K, Wei Z M, Chang K, Wang K Y 2020 Sci. Bull. 65 1072Google Scholar

    [5]

    Mermin N D, Wagner H 1966 Phys. Rev. Lett. 17 1133Google Scholar

    [6]

    Gong C, Li L, Li Z L, Ji H W, Stern A, Xia Y, Cao T, Bao W, Wang C Z, Wang Y, Qiu Z Q, Cava R J, Louie S G, Xia J, Zhang X 2017 Nature 546 265Google Scholar

    [7]

    Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P, Xu X D 2017 Nature 546 270Google Scholar

    [8]

    Deng Y, Yu Y, Song Y, Zhang J Z, Wang N Z, Sun Z Y, Yi Y F, Wu Y Z, Wu S W, Zhu J Y, Wang J, Chen X H, Zhang Y B 2018 Nature 563 94Google Scholar

    [9]

    Bonilla M, Kolekar S, Ma Y J, Diaz H C, Kalappattil V, Das R, Eggers T, Gutierrez H R, Phan M H, Batzill M 2018 Nat. Nanotechnol. 13 289Google Scholar

    [10]

    O'Hara D J, Zhu T, Trout A H, Ahmed A S, Luo Y Q, Lee C H, Brenner M R, Rajan S, Gupta J, McComb D W, Kawakami R K 2018 Nano. Lett. 18 3125Google Scholar

    [11]

    Dzyaloshinsky I 1958 J. Phys. Chem. Solids 4 241Google Scholar

    [12]

    Moriya T 1960 Phys. Rev. 120 91Google Scholar

    [13]

    Muehlbauer S, Binz B, Jonietz F, Pfleiderer C, Rosch A, Neubauer A, Georgii R, Böni P 2009 Science 323 915Google Scholar

    [14]

    Zhu Y, Ma C L, Shi D N, Zhang K C 2014 Phys. Lett. A 378 2234Google Scholar

    [15]

    Yang H X, Thiaville A, Rohart S, Fert A, Chshiev M 2015 Phys. Rev. Lett. 115 267210Google Scholar

    [16]

    Pan Y, Zhu Y, Shi D N, Wei X Y, Ma C L, Zhang K C 2015 J. Alloys Compd. 644 341Google Scholar

    [17]

    Xiang H J, Lee C, Koo H J, Gong X G 2013 Dalton Trans. 42 823Google Scholar

    [18]

    Marsman M, Hafner J 2002 Phys. Rev. B 66 224409Google Scholar

    [19]

    Sandratskii L M 1991 J. Phys. Condens. Matter 3 8565Google Scholar

    [20]

    Knöpfle K, Sandratskii L M, Kübler J 2000 Phys. Rev. B 62 5564Google Scholar

    [21]

    Hector A L, Jura M, Levason W, Reid S D, Reid G 2009 New J. Chem. 33 641Google Scholar

    [22]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [23]

    Blöchl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [24]

    Farooq M U, Hashmi A, Khan I, Hong J S 2017 Sci. Rep. 7 17101Google Scholar

    [25]

    Liu C, Fu B T, Yin H B, Zhang G B, Dong C 2020 Appl. Phys. Lett. 117 103101Google Scholar

    [26]

    Zhang J, Jia S, Kholmanov I, Dong L, Er D, Chen W B, Guo H, Jin Z H, Shenoy V B, Shi L, Lou J 2017 ACS Nano 11 8192Google Scholar

    [27]

    He J J, Li S 2018 Comput. Mater. Sci. 152 151Google Scholar

    [28]

    Xu C S, Feng J S, Prokhorenko S, Nahas Y, Xiang H J, Bellaiche L 2020 Phys. Rev. B 101 060404Google Scholar

    [29]

    Fert A, Cros V, Sampaio J 2013 Nat. Nanotechnol. 8 152Google Scholar

  • 图 1  奈尔型斯格明子的磁矩结构示意图

    Figure 1.  Spin configuration of Néel skyrmions.

    图 2  VSe 2原子结构示意图 (a) 俯视图; (b) 侧视图

    Figure 2.  The view of the lattice structure for VSe 2: (a) Top view; (b) side view.

    图 3  (a)六角结构的原胞基矢和倒格基矢的示意图; (b)六角结构的磁性原子及各近邻原子的分布; (c) 磁性原子的磁矩变化坐标系(蓝色坐标轴)以及二维晶格坐标系(黑色坐标轴)示意图

    Figure 3.  (a) The labeled a 1 and a 2 are basis vectors and b 1 and b 2 are reciprocal lattice vectors. (b) distribution of neighboring atoms; (c) blue axis and black axis represent the coordinate system of magnetic moment and two dimensional lattice , respectively.

    图 4  离散点是VSe 2体系通过程序计算得到的自旋螺旋能量色散关系 E( q ), 其中 q 是自旋螺旋的波矢; 实线是拟合曲线

    Figure 4.  Scatter symbols are energy dispersion E( q ) as a function of the spiral wave vector q calculated by program, lines are fitted ones.

    图 5  MnB原子结构示意图 (a) 俯视图; (b) 侧视图

    Figure 5.  Structure of MnB: (a) Vertical view; (b) side view.

    图 6  离散点是MnB体系通过程序计算得到的自旋螺旋能量色散关系 E( q ), 其中 q 是自旋螺旋的波矢; 实线是拟合曲线

    Figure 6.  Scatter symbols are energy dispersion E( q ) of MnB as a function of the spiral wave vector q calculated by program, lines are fitted ones.

    图 7  离散点是MnB体系通过程序计算得到的自旋螺旋能量色散关系 E( q ), 其中 q 是自旋螺旋的波矢; 实线是拟合曲线

    Figure 7.  Scatter symbols are energy dispersion E( q ) of MnB as a function of the spiral wave vector q calculated by program, lines are fitted ones.

    图 8  MnSTe原子结构示意图 (a) 俯视图; (b) 侧视图

    Figure 8.  Atomic structure of MnSTe: (a) Vertical view; (b) side view.

    图 9  (a)离散点是MnSTe体系通过程序计算得到的自旋螺旋能量色散关系 E( q )和 E(– q ), 其中 q 是自旋螺旋的波矢, 实线是拟合曲线; (b)离散点是MnSTe体系通过程序计算的 E( q )与 E(– q )之间的能量差 E DMI( q ), 实线是拟合曲线

    Figure 9.  (a) Scatter symbols are energy dispersion E( q ) and E(– q ) of MnSTe as a function of the spiral wave vector q calculated by program, lines are fitted ones; (b) scatter symbols are E DMI( q ) which means the difference between E( q ) and E(– q ), lines are fitted ones.

    图 10  Cr 2I 3Cl 3原子结构示意图 (a) 俯视图; (b) 侧视图

    Figure 10.  Atomic structure of Cr 2I 3Cl 3: (a) Vertical view; (b) side view.

    图 11  (a)离散点是Cr 2I 3Cl 3体系通过程序计算得到的自旋螺旋能量色散关系 E( q )和 E(– q ), 其中 q 是自旋螺旋的波矢, 实线是拟合曲线; (b)离散点是Cr 2I 3Cl 3体系通过程序计算的 E( q )与 E(– q )之间的能量差 E DMI( q ), 实线是拟合曲线

    Figure 11.  (a) Scatter symbols are energy dispersion E( q ) and E(– q ) of Cr 2I 3Cl 3 as a function of the spiral wave vector q calculated by program, lines are fitted ones; (b) scatter symbols are E DMI( q ) which means the difference between E( q ) and E(– q ), lines are fitted ones.

    表 1  VSe 2结构中磁性原子各近邻的海森伯交换参数大小(单位: meV)

    Table 1.  Calculated parameters of Heisenberg exchange J of VSe 2, J is considered to the eighth neighbor. (The unit of J is meV).

    J 1 J 2 J 3 J 4 J 5 J 6 J 7 J 8
    27.24 12.81 –2.8 0.59 –1 –1.5 –0.5 0.38
    DownLoad: CSV

    表 2  MnB结构( U= 3 eV)中磁性原子各近邻的海森伯交换参数大小(单位: meV)

    Table 2.  Calculated parameters of Heisenberg exchange J of MnB, J is considered to the eighth neighbor. (The unit of J is meV).

    J 1 J 2 J 3 J 4 J 5 J 6 J 7 J 8
    21.22 44.5 –2.52 –4.53 0.952 1.08 0.569 1.27
    DownLoad: CSV

    表 3  MnSTe结构中磁性原子各近邻的海森伯交换参数大小(单位: meV)

    Table 3.  Calculated parameters of Heisenberg exchange J of MnSTe, J is considered to the eighth neighbor. (The unit of J is meV).

    J 1 J 2 J 3 J 4 J 5 J 6 J 7 J 8
    5.49 4.64 6 –1.09 –1.32 0.765 –0.046 0.76
    DownLoad: CSV

    表 4  MnSTe结构中磁性原子各近邻的DM交换参数大小(单位: meV)

    Table 4.  Calculated parameters of DM exchange d of MnSTe, d is considered to the forth neighbor. (The unit of d is meV).

    d 1 d 2 d 3 d 4
    5.46 1.77 2.78 –0.248
    DownLoad: CSV

    表 5  Cr 2I 3Cl 3结构中磁性原子各近邻的海森伯交换参数大小(单位: meV)

    Table 5.  Calculated parameters of Heisenberg exchange J of Cr 2I 3Cl 3, J is considered to the eighth neighbor. (The unit of J is meV).

    J 1 J 2 J 3 J 4 J 5 J 6 J 7 J 8
    12.92 –0.35 2.11 3.55 –1.46 –0.67 –0.11 0.841
    DownLoad: CSV

    表 6  Cr 2I 3Cl 3结构中磁性原子各近邻的DM交换参数大小(单位: meV)

    Table 6.  Calculated parameters of DM exchange d of Cr 2I 3Cl 3, d is considered to the forth neighbor. (The unit of d is meV).

    d 1 d 2 d 3 d 4
    –0.88 0.378 1.04 –0.0493
    DownLoad: CSV
    Baidu
  • [1]

    Bi C, Liu Y H, Newhouse-Illige T, Xu M, Rosales M, Freeland J W, Mryasov O, Zhang S F, Velthuis S G E, Wang W G 2014 Phys. Rev. Lett. 113 267202

    [2]

    Novoselov K S, Mishchenko A, Carvalho A, Castro Neto A H 2016 Science 353 9439Google Scholar

    [3]

    Wang Z, Gutiérrez-Lezama I, Ubrig N, Kroner M, Gibertini M, Taniguchi T, Watanabe K, Imamoğlu A, Giannini E, Morpurgo A F 2018 Nat. Commun. 9 2516Google Scholar

    [4]

    Hu C, Zhang D, Yan F G, Li Y C, Lv Q S, Zhu W K, Wei Z M, Chang K, Wang K Y 2020 Sci. Bull. 65 1072Google Scholar

    [5]

    Mermin N D, Wagner H 1966 Phys. Rev. Lett. 17 1133Google Scholar

    [6]

    Gong C, Li L, Li Z L, Ji H W, Stern A, Xia Y, Cao T, Bao W, Wang C Z, Wang Y, Qiu Z Q, Cava R J, Louie S G, Xia J, Zhang X 2017 Nature 546 265Google Scholar

    [7]

    Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P, Xu X D 2017 Nature 546 270Google Scholar

    [8]

    Deng Y, Yu Y, Song Y, Zhang J Z, Wang N Z, Sun Z Y, Yi Y F, Wu Y Z, Wu S W, Zhu J Y, Wang J, Chen X H, Zhang Y B 2018 Nature 563 94Google Scholar

    [9]

    Bonilla M, Kolekar S, Ma Y J, Diaz H C, Kalappattil V, Das R, Eggers T, Gutierrez H R, Phan M H, Batzill M 2018 Nat. Nanotechnol. 13 289Google Scholar

    [10]

    O'Hara D J, Zhu T, Trout A H, Ahmed A S, Luo Y Q, Lee C H, Brenner M R, Rajan S, Gupta J, McComb D W, Kawakami R K 2018 Nano. Lett. 18 3125Google Scholar

    [11]

    Dzyaloshinsky I 1958 J. Phys. Chem. Solids 4 241Google Scholar

    [12]

    Moriya T 1960 Phys. Rev. 120 91Google Scholar

    [13]

    Muehlbauer S, Binz B, Jonietz F, Pfleiderer C, Rosch A, Neubauer A, Georgii R, Böni P 2009 Science 323 915Google Scholar

    [14]

    Zhu Y, Ma C L, Shi D N, Zhang K C 2014 Phys. Lett. A 378 2234Google Scholar

    [15]

    Yang H X, Thiaville A, Rohart S, Fert A, Chshiev M 2015 Phys. Rev. Lett. 115 267210Google Scholar

    [16]

    Pan Y, Zhu Y, Shi D N, Wei X Y, Ma C L, Zhang K C 2015 J. Alloys Compd. 644 341Google Scholar

    [17]

    Xiang H J, Lee C, Koo H J, Gong X G 2013 Dalton Trans. 42 823Google Scholar

    [18]

    Marsman M, Hafner J 2002 Phys. Rev. B 66 224409Google Scholar

    [19]

    Sandratskii L M 1991 J. Phys. Condens. Matter 3 8565Google Scholar

    [20]

    Knöpfle K, Sandratskii L M, Kübler J 2000 Phys. Rev. B 62 5564Google Scholar

    [21]

    Hector A L, Jura M, Levason W, Reid S D, Reid G 2009 New J. Chem. 33 641Google Scholar

    [22]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [23]

    Blöchl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [24]

    Farooq M U, Hashmi A, Khan I, Hong J S 2017 Sci. Rep. 7 17101Google Scholar

    [25]

    Liu C, Fu B T, Yin H B, Zhang G B, Dong C 2020 Appl. Phys. Lett. 117 103101Google Scholar

    [26]

    Zhang J, Jia S, Kholmanov I, Dong L, Er D, Chen W B, Guo H, Jin Z H, Shenoy V B, Shi L, Lou J 2017 ACS Nano 11 8192Google Scholar

    [27]

    He J J, Li S 2018 Comput. Mater. Sci. 152 151Google Scholar

    [28]

    Xu C S, Feng J S, Prokhorenko S, Nahas Y, Xiang H J, Bellaiche L 2020 Phys. Rev. B 101 060404Google Scholar

    [29]

    Fert A, Cros V, Sampaio J 2013 Nat. Nanotechnol. 8 152Google Scholar

  • [1] Qin Wen-Jing, Xu Bo, Sun Bao-Zhen, Liu Gang. First principles study of electrical and magnetic properties of two-dimensional ferromagnetic semiconductors CrI3 adsorbed by atoms. Acta Physica Sinica, 2021, 70(11): 117101. doi: 10.7498/aps.70.20210090
    [2] Magnetic exchange interaction in two dimensional lattice under the generalized Bloch condition. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211317
    [3] Hou Lu, Tong Xin, Ouyang Gang. First-principles study of atomic bond nature of one-dimensional carbyne chain under different strains. Acta Physica Sinica, 2020, 69(24): 246802. doi: 10.7498/aps.69.20201231
    [4] Lin Qi-Min, Zhang Xia, Lu Qi-Chao, Luo Yan-Bin, Cui Jian-Gong, Yan Xin, Ren Xiao-Min, Huang Xue. First-principles study on structural stability of graphene oxide and catalytic activity of nitric acid. Acta Physica Sinica, 2019, 68(24): 247302. doi: 10.7498/aps.68.20191304
    [5] Liu Fei, Wen Zhi-Peng. First principle study of occupancy, bonding characteristics and alloying effect of Zr, Nb, V in bulk α-Fe(C). Acta Physica Sinica, 2019, 68(13): 137101. doi: 10.7498/aps.68.20182282
    [6] Huang Can, Li Xiao-Ying, Zhu Yan, Pan Yan-Fei, Fan Ji-Yu, Shi Da-Ning, Ma Chun-Lan. First principle study of weak Dzyaloshinsky-Moriya interaction in Co/BN surface. Acta Physica Sinica, 2018, 67(11): 117102. doi: 10.7498/aps.67.20180337
    [7] Tan Xing-Yi, Wang Jia-Heng, Zhu Yi-Yi, Zuo An-You, Jin Ke-Xin. First-principles calculations of phosphorene doped with carbon, oxygen and sulfur. Acta Physica Sinica, 2014, 63(20): 207301. doi: 10.7498/aps.63.207301
    [8] Yang Zi-Yuan. Local structure distortion and the spin-Hamiltonian parameters for Fe3+-doped ZnGa2O4 crystal materials. Acta Physica Sinica, 2014, 63(17): 177501. doi: 10.7498/aps.63.177501
    [9] Wang Ai-Ling, Wu Zhi-Min, Wang Cong, Hu Ai-Yuan, Zhao Ruo-Yu. First-priciples study on Mn-doped LiZnAs, a new diluted magnetic semiconductor. Acta Physica Sinica, 2013, 62(13): 137101. doi: 10.7498/aps.62.137101
    [10] Huang You-Lin, Hou Yu-Hua, Zhao Yu-Jun, Liu Zhong-Wu, Zeng De-Chang, Ma Sheng-Can. Influences of strain on electronic structure and magnetic properties of CoFe2O4 from first-principles study. Acta Physica Sinica, 2013, 62(16): 167502. doi: 10.7498/aps.62.167502
    [11] Wang Yu-Mei, Pei Hui-Xia, Ding Jun, Wen Li-Wei. First-principles study of magnetism and electronic structureof Sb-containing half-Heusler alloys. Acta Physica Sinica, 2011, 60(4): 047110. doi: 10.7498/aps.60.047110
    [12] Hu Yu-Ping, Ping Kai-Bin, Yan Zhi-Jie, Yang Wen, Gong Chang-Wei. First-principles calculations of structure and magnetic properties of -Fe(Si)phase precipitated in the Finemet alloy. Acta Physica Sinica, 2011, 60(10): 107504. doi: 10.7498/aps.60.107504
    [13] Jiang Xue-Fan, Luo Li-Jin, Jiang Qing, Zhong Chong-Gui, Tan Zhi-Zhong, Quan Hong-Rui. First-principle prediction of magnetic shape memory effect of Heusler alloy Mn2NiGe. Acta Physica Sinica, 2010, 59(11): 8037-8041. doi: 10.7498/aps.59.8037
    [14] Sun Wei-Feng, Li Mei-Cheng, Zhao Lian-Cheng. Phonon band structure and electron-phonon interactions in Ga and Sb nanowires: a first-principles study. Acta Physica Sinica, 2010, 59(10): 7291-7297. doi: 10.7498/aps.59.7291
    [15] Lu Zhi-Peng, Zhu Wen-Jun, Lu Tie-Cheng, Liu Shao-Jun, Cui Xin-Lin, Chen Xiang-Rong. The mechanism of structure phase transition from α Fe to ε Fe under uniaxial strain: First-principles calculations. Acta Physica Sinica, 2010, 59(6): 4303-4312. doi: 10.7498/aps.59.4303
    [16] Lin Zhu, Guo Zhi-You, Bi Yan-Jun, Dong Yu-Cheng. Ferromagnetism and the optical properties of Cu-doped AlN from first-principles study. Acta Physica Sinica, 2009, 58(3): 1917-1923. doi: 10.7498/aps.58.1917
    [17] Lu Zhi-Peng, Zhu Wen-Jun, Liu Shao-Jun, Lu Tie-Cheng, Chen Xiang-Rong. Structure phase transition from α to ε in Fe under non-hydrostatic pressure: an ab initio study. Acta Physica Sinica, 2009, 58(3): 2083-2089. doi: 10.7498/aps.58.2083
    [18] Wei Qun, Yang Zi-Yuan, Wang Can-Jun, Xu Qi-Ming. Investigations of lattice distortion and spin-Hamiltonian parameters for V3+ in Al2O3 crystal. Acta Physica Sinica, 2007, 56(4): 2393-2398. doi: 10.7498/aps.56.2393
    [19] Pan Zhi-Jun, Zhang Lan-Ting, Wu Jian-Sheng. First-principles study of electronic structure for CoSi. Acta Physica Sinica, 2005, 54(1): 328-332. doi: 10.7498/aps.54.328
    [20] Dai Yao-Dong, He Yun, Huang Hong-Bo, Shao Ting, Xia Yuan-Fu. Synthesis and magnetism of the intercalation compound Fe0.95PS3(MV)0.11. Acta Physica Sinica, 2003, 52(12): 3020-3026. doi: 10.7498/aps.52.3020
Metrics
  • Abstract views:  5509
  • PDF Downloads:  138
  • Cited By: 0
Publishing process
  • Received Date:  16 July 2021
  • Accepted Date:  20 September 2021
  • Available Online:  28 December 2021
  • Published Online:  05 January 2022

/

返回文章
返回
Baidu
map