Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Tribological properties of suspended hexagonal boron nitride under electric field

Chen Xing-Yuan Huang Yao Peng Yi-Tian

Citation:

Tribological properties of suspended hexagonal boron nitride under electric field

Chen Xing-Yuan, Huang Yao, Peng Yi-Tian
科大讯飞翻译 (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Hexagonal boron nitride (h-BN) has huge potential applications in micro-nano electromechanical system due to its good lubricity and insulation. In this paper, a microporous array is prepared on a SiO2/Si substrate by the substrate etching process, and then the h-BN is transferred to the microporous substrate to form a suspension structure. The effect of electric field on tribological properties of suspended h-BN is studied by atomic force microscopy. The results show that the friction of the suspended h-BN is smaller than the friction on the h-BN supported by the substrate, because the greater in-plane stretch weakens the puckering effect. The electric field increases the friction of the suspended h-BN, and the influence of positive bias is greater than that of negative bias. The application of the electric field increases the electrostatic force on the tip, thereby increasing the additional load and the interface barrier in the friction process. The electric field causes the stick-slip behavior to change from single-slip to multi-slip. Compared with the h-BN supported by the substrate, h-BN in the suspended state is strongly affected by the electric field. The reduction of the interface distance and the absence of the substrate oxide layer lead the electrostatic force to increase. This paper proposes a method to adjust h-BN’s friction by electric field, which provides theoretical guidance for studying the friction characteristics of two-dimensional materials.
      Corresponding author: Huang Yao, huanghuang36@dhu.edu.cn
    • Funds: Project supported by National Natural Science Foundation of China (Grant No. 51905089) and the Fundamental Research Funds for the Central Universities of Ministry of Education of China (Grant No. 2232020D-31)
    [1]

    郑泉水, 欧阳稳根, 马明, 张首沫, 赵治华, 董华来, 林立 2016 科技导报 34 12

    Zheng Q S, Ouyang W G, Ma M, Zhang S M, Zhao Z H, Dong H L, Lin L 2016 Sci. Technol. Rev. 34 12

    [2]

    Zhang S, Ma T B, Erdemir A, Li Q Y 2019 Mater. Today 26 67Google Scholar

    [3]

    Spear J C, Ewers B W, Batteas J D 2015 Nano Today 10 301Google Scholar

    [4]

    Dean C R, Young A F, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard K L 2010 Nat. Nanotechnol. 5 722Google Scholar

    [5]

    Liu X C, Hwang E H, Yoo W J, Lee S, Cheong B K 2015 Solid State Commun. 209 1

    [6]

    Mirkarimi P B, McCarty K F, Medlin D L 1997 Mater. Sci. Eng. R Rep. 21 47Google Scholar

    [7]

    Martin J M, Mogne T L, Chassagnette C, Gardos M N 1992 Tribol. Trans. 35 462Google Scholar

    [8]

    Watanabe K, Taniguchi T, Kanda H 2004 Nat. Mater. 3 404Google Scholar

    [9]

    Lee C G, Li Q Y, Kalb W, Liu X Z, Berger H, Carpick R W, Hone J 2010 Science 328 76Google Scholar

    [10]

    Zeng X Z, Peng Y T, Yu M C, Lang H J, Cao X A, Zou K 2018 ACS Appl. Mater. Interfaces 10 8214Google Scholar

    [11]

    Jiang Y, Yue L L, Yan B S, Liu X, Yang X F, Tai G A, Song J 2015 Nano 10 1550038Google Scholar

    [12]

    Lang H J, Peng Y T, Shao G W, Zou K, Tao G M 2019 J. Mater. Chem. C 7 6041Google Scholar

    [13]

    Wagner K, Cheng P, Vezenov D 2011 Langmuir 27 4635Google Scholar

    [14]

    Nemes-Incze P, Osváth Z, Kamarás K, Biró L P 2008 Carbon 46 1435Google Scholar

    [15]

    Elinski M B, Menard B D, Liu Z, Batteas J D 2017 J. Phys. Chem. C 121 5635

    [16]

    Fang L, Liu D M, Guo Y Z, Liao Z M, Luo J B, Wen S Z 2017 Nanotechnology 28 245703Google Scholar

    [17]

    Smolyanitsky A, Killgore J P, Tewary V K 2012 Phys. Rev. B 85 035412Google Scholar

    [18]

    Li H, Zeng X C 2012 ACS Nano 6 2401Google Scholar

    [19]

    Kostoglou N, Polychronopoulou K, Rebholz C 2015 Vacuum 112 42Google Scholar

    [20]

    Jean M S, Hudlet S, Guthmann C, Berger J 1999 Eur. Phys. J. B. 12 471Google Scholar

    [21]

    Qi Y B, Park J Y, Hendriksen B L M, Ogletree D F, Salmeron M 2008 Phys. Rev. B 77 184105Google Scholar

    [22]

    Law B M, Rieutord F 2002 Phys. Rev. B 66 035402Google Scholar

    [23]

    Lang H J, Peng Y T, Cao X A, Zou K 2020 ACS Appl. Mater. Interfaces 12 25503Google Scholar

    [24]

    Medyanik S N, Liu W K, Sung I H, Carpick R W 2006 Phys. Rev. Lett. 97 136106Google Scholar

  • 图 1  制备微孔阵列硅片的设备及试样 (a) 紫外深度光刻机; (b) 微孔阵列硅片的光学图

    Figure 1.  Equipment for preparing micro-hole array silicon wafer and sample: (a) Ultraviolet depth lithography machine; (b) optical image of micro-hole array silicon wafer.

    图 2  样品的光学图和形貌图 (a) 微孔基底上h-BN的光学图; (b) 微孔基底上h-BN的AFM形貌图, 插图为h-BN的高度轮廓图

    Figure 2.  Optical image and topography of the sample: (a) Optical image of h-BN on microporous substrate; (b) AFM topography of h-BN on microporous substrate, the illustration shows the height profile of h-BN.

    图 3  微孔和悬浮h-BN的形貌及高度轮廓图 (a) 微孔的AFM形貌图; (b) 微孔的高度轮廓图; (c) 悬浮h-BN的AFM形貌图; (d) 悬浮h-BN的高度轮廓图

    Figure 3.  Topography and height profile of microporous and suspended h-BN: (a) AFM topography of micropores; (b) height profile of micropores; (c) AFM topography of suspended h-BN; (d) height profile of suspended h-BN.

    图 4  h-BN在悬浮和支撑状态下的摩擦和黏附对比 (a) 悬浮状态和支撑状态的h-BN的摩擦力-载荷关系; (b) 悬浮状态和支撑状态的h-BN的黏附力图

    Figure 4.  Comparison of friction and adhesion on h-BN in suspended and supported state: (a) Friction-load relationship of suspended and supported h-BN; (b) adhesion on suspended and supported h-BN.

    图 5  不同电场下悬浮h-BN的摩擦力-载荷关系的对比 (a) 不同正偏压下悬浮h-BN的摩擦力-载荷关系; (b) 不同负偏压下悬浮h-BN的摩擦力-载荷关系

    Figure 5.  Comparison of friction-load relationship of suspended h-BN under different electric fields: (a) Friction-load relationship of suspended h-BN under different positive biases; (b) friction-load relationship of suspended h-BN under different negative biases.

    图 6  不同电场下悬浮h-BN的黏附力对比 (a) 不同正偏压下悬浮h-BN表面的黏附力; (b) 不同负偏压下悬浮h-BN表面的黏附力

    Figure 6.  Comparison of adhesions on suspended h-BN under different electric fields: (a) Adhesions on suspended h-BN under different positive biases; (b) Adhesions on suspended h-BN under different negative biases.

    图 7  悬浮h-BN的黏滑运动在电场下的变化 (a) 无电场时悬浮h-BN的侧向力曲线; (b) +5 V偏压下悬浮h-BN的侧向力曲线

    Figure 7.  Variation of stick-slip behavior of suspended h-BN under electric field: (a) Lateral force curves measured on suspended h-BN without bias; (b) lateral force curves measured on suspended h-BN under +5 V bias.

    图 8  电场下支撑与悬浮状态的h-BN的摩擦力对比 (a) 电场下有基底支撑的h-BN的摩擦力图; (b) 不同偏压下有基底支撑的h-BN的摩擦力柱状图; (c) 电场下悬浮h-BN的摩擦力图; (d) 不同偏压下悬浮h-BN的摩擦力柱状图

    Figure 8.  Comparison of the friction on the supported and suspended h-BN under electric fields: (a) Friction on supported h-BN under biases; (b) histogram of the friction on supported h-BN under different biases; (c) friction on suspended h-BN under biases; (d) histogram of the friction on suspended h-BN under different biases.

    图 9  电场下支撑与悬浮状态的h-BN示意图对比 (a) 电场下有基底支撑的h-BN的示意图; (b)电场下悬浮h-BN的示意图

    Figure 9.  Comparison of schematic diagram of h-BN in supported and suspended state under electric field: (a) Schematic diagram of supported h-BN under electric field; (b) schematic diagram of suspended h-BN under electric field.

    Baidu
  • [1]

    郑泉水, 欧阳稳根, 马明, 张首沫, 赵治华, 董华来, 林立 2016 科技导报 34 12

    Zheng Q S, Ouyang W G, Ma M, Zhang S M, Zhao Z H, Dong H L, Lin L 2016 Sci. Technol. Rev. 34 12

    [2]

    Zhang S, Ma T B, Erdemir A, Li Q Y 2019 Mater. Today 26 67Google Scholar

    [3]

    Spear J C, Ewers B W, Batteas J D 2015 Nano Today 10 301Google Scholar

    [4]

    Dean C R, Young A F, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard K L 2010 Nat. Nanotechnol. 5 722Google Scholar

    [5]

    Liu X C, Hwang E H, Yoo W J, Lee S, Cheong B K 2015 Solid State Commun. 209 1

    [6]

    Mirkarimi P B, McCarty K F, Medlin D L 1997 Mater. Sci. Eng. R Rep. 21 47Google Scholar

    [7]

    Martin J M, Mogne T L, Chassagnette C, Gardos M N 1992 Tribol. Trans. 35 462Google Scholar

    [8]

    Watanabe K, Taniguchi T, Kanda H 2004 Nat. Mater. 3 404Google Scholar

    [9]

    Lee C G, Li Q Y, Kalb W, Liu X Z, Berger H, Carpick R W, Hone J 2010 Science 328 76Google Scholar

    [10]

    Zeng X Z, Peng Y T, Yu M C, Lang H J, Cao X A, Zou K 2018 ACS Appl. Mater. Interfaces 10 8214Google Scholar

    [11]

    Jiang Y, Yue L L, Yan B S, Liu X, Yang X F, Tai G A, Song J 2015 Nano 10 1550038Google Scholar

    [12]

    Lang H J, Peng Y T, Shao G W, Zou K, Tao G M 2019 J. Mater. Chem. C 7 6041Google Scholar

    [13]

    Wagner K, Cheng P, Vezenov D 2011 Langmuir 27 4635Google Scholar

    [14]

    Nemes-Incze P, Osváth Z, Kamarás K, Biró L P 2008 Carbon 46 1435Google Scholar

    [15]

    Elinski M B, Menard B D, Liu Z, Batteas J D 2017 J. Phys. Chem. C 121 5635

    [16]

    Fang L, Liu D M, Guo Y Z, Liao Z M, Luo J B, Wen S Z 2017 Nanotechnology 28 245703Google Scholar

    [17]

    Smolyanitsky A, Killgore J P, Tewary V K 2012 Phys. Rev. B 85 035412Google Scholar

    [18]

    Li H, Zeng X C 2012 ACS Nano 6 2401Google Scholar

    [19]

    Kostoglou N, Polychronopoulou K, Rebholz C 2015 Vacuum 112 42Google Scholar

    [20]

    Jean M S, Hudlet S, Guthmann C, Berger J 1999 Eur. Phys. J. B. 12 471Google Scholar

    [21]

    Qi Y B, Park J Y, Hendriksen B L M, Ogletree D F, Salmeron M 2008 Phys. Rev. B 77 184105Google Scholar

    [22]

    Law B M, Rieutord F 2002 Phys. Rev. B 66 035402Google Scholar

    [23]

    Lang H J, Peng Y T, Cao X A, Zou K 2020 ACS Appl. Mater. Interfaces 12 25503Google Scholar

    [24]

    Medyanik S N, Liu W K, Sung I H, Carpick R W 2006 Phys. Rev. Lett. 97 136106Google Scholar

Metrics
  • Abstract views:  5238
  • PDF Downloads:  77
  • Cited By: 0
Publishing process
  • Received Date:  28 February 2021
  • Accepted Date:  15 April 2021
  • Available Online:  07 June 2021
  • Published Online:  20 August 2021

/

返回文章
返回
Baidu
map