Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Spatiotemporal signal processing and device stability based on bi-layer biomimetic memristor

Zhu Wei Liu Lan Wen Chang-Bao Li Jie

Citation:

Spatiotemporal signal processing and device stability based on bi-layer biomimetic memristor

Zhu Wei, Liu Lan, Wen Chang-Bao, Li Jie
PDF
HTML
Get Citation
  • The neural network under the current computer architecture is difficult to process complex data efficiently, thus becoming one of the bottlenecks restricting the development of artificial intelligence technology. The human brain has the characteristics of high efficiency, low power consumption and integration of memory and computing, and is regarded as a most potential computing system to break the traditional von Neumann computing system. Synaptic biomimetic device is to realize the neural mimicry of human brain from the hardware level. It can simulate the information processing mode of brain nerve, that is, the process of “memory” and “calculation” can be realized on the same device, which is of great significance in building a new computing system. In recent years, the fabrication of memristor materials for bio-mimetic synaptic devices has made progress, but most of them focus on the simulation of synaptic function. The key research of pulse signal perception and information transmission is relatively lacking. In this paper, an bi-layer memristor with structure Al/nc-Al AlN/A2O3/Ag is fabricated by rf sputtering method to realize the basic functions of bionic synaptic devices. It is found that this bio-mimetic memristor exhibits bipolar switching property which is the basic condition to produce memristor based neural synapse. Both of PPF and PPD process can be observed and there will be no firing signal observed if the pulse interval is as large as 350 ms. The change of device conductance should be related to pulse voltage, frequency and pulse number applied. The larger pulse voltage, frequency and number will cause device conductance to increase sharply in both positive and negative pulse voltage region. The STDP measurement is executed with different sequence pulses from post and previous neuron separately. If the pulse of previous synapse comes in front of pulse from post synapse, the conductance will increase, which is so-called LTP process. If the pulse of previous neuron comes behind of pulse from post neuron, the conductance will be reduced as well. Triplet STDP measurement is executed with at least three pulses from previous and post neuron at the meanwhile. It is concluded that if the interval time of the first two pulses is fixed, the device conductance more depends on the value of the second and third pulse interval. Ebbinghaus forgetting curve can be used to explain the reason why the device conductance declines with time going by. The stability study of this memristor includes endurance and retention properties at both room and high temperature. It is found this biomimetic memristor can maintain its conductance for over 115.7 days at 85 ℃, which is long enough for current neural network design.
      Corresponding author: Zhu Wei, wzhu@chd.edu.cn
    • Funds: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 61704010) and the Natural Science Foundation of Shaanxi Province, China (Grant No. 2020JM-238).
    [1]

    Pei J, Deng L, Song S, et al. 2019 Nature 572 106Google Scholar

    [2]

    Krestinskaya O, Salama K N, James A P 2020 Adv. Intell. Syst. 2 2000075Google Scholar

    [3]

    Shastri B J, Tait A N, Ferreira L T, Pernice W H P, Bhaskaran H, Wright C D, Prucnal P R 2021 Nat. Photonics 15 102Google Scholar

    [4]

    Abrol A, Fu Z, Salman M, Silva R, Du Y, Plis S, Calhoun V 2021 Nat. Commun. 12 353Google Scholar

    [5]

    Xia Q F, Yang J J, Publisher C 2019 Nat. Mater. 18 518Google Scholar

    [6]

    Lim D H, Wu S, Zhao R, Lee J H, Jeong H, Shi L 2021 Nat. Commun. 12 319Google Scholar

    [7]

    Demin V A, Nekhaev D V, Surazhevsky I A, Nikiruy K E, Emelyanov A V, Nikolaev S N, Rylkov V V, Kovalchuk M V 2021 Neural Networks 134 64Google Scholar

    [8]

    Irem B, Manuel L G, Nandakumar S R, Timoleon M, Thomas P, Tomas T, Bipin R, Yusuf L, Abu S, Evangelos E 2018 Nat. Commun. 9 25141

    [9]

    Wang Z Q, Xu H Y, Li X H, Yu H, Liu Y C, Zhu X J 2012 Adv. Funct. Mater. 22 2758Google Scholar

    [10]

    Zhang Y N, Tang J S, Li X Y, Gao B, He Q, Wu H Q 2021 Nat. Commun. 12 408Google Scholar

    [11]

    Liu L F, Yu D, Ma W J, Chen B, Zhang F F, Gao B, Kang J F 2015 Jpn. J Appl Phys 54 021802Google Scholar

    [12]

    Chen C, Yang Y C, Zeng F, Pan F 2010 Appl. Phys. Lett. 97 083502Google Scholar

    [13]

    Zhu W, Chen T P, Yang M, Liu Y, Fung S 2012 IEEE Trans. Electron Devices 59 2363

    [14]

    Zhao B, Xiao M, Zhou Y N 2019 Nanotechnology 30 425202Google Scholar

    [15]

    Gul F, Efeoglu H 2017 Ceram. Int. 43 10770Google Scholar

    [16]

    Bae S H, Lee S, Koo H, Lin L, Jo B H, Park C, Wang Z L 2013 Adv. Mater. 25 5098Google Scholar

    [17]

    Rodriguez F A, Cagli C, Perniola L, Miranda E, Sune J 2018 Microelectron. Eng. 195 101Google Scholar

    [18]

    Krishna K P, Dhanashri V D, Shraddha M B, Harshada S P, Suraj M M, Ajay S N, Sawanta S M, Chang K H, Sungjun K, Pramod S P, Tukaram D D 2019 J. Phys. D: Appl. Phys 52 175306Google Scholar

    [19]

    陈义豪, 徐威, 王钰琪, 万相, 李岳峰, 梁定康, 陆立群, 刘鑫伟, 连晓娟, 胡二涛, 郭宇峰, 许剑光, 童祎, 肖建 2019 68 098501Google Scholar

    Chen Y H, Xue W, Wang Y Q, Wan X, Li Y F, Liang D K, Lu L Q, Liu X W, Lian X J, Hu E T, Guo Y F, Xu J G, Tong Y, Xiao J 2019 Acta Phys. Sin 68 098501Google Scholar

    [20]

    Sahu D P, Jetty P, Jammalamadaka S N 2020 Nanotechnology 32 155701

    [21]

    Fyrigos I A, Ntinas V, Sirakoulis G C, Dimitrakis P, Karafyllidis I G 2021 IEEE Trans Nanotechnol. 20 113Google Scholar

    [22]

    Bai N, Tian B Y, Miao G Q, Xue K H, Wang T, Yuan J H, Liu X X, Li Z N, Guo S, Zhou Z P, Liu N, Lu H, Tang X D, Sun H J, Miao X S 2021 Appl. Phys. Lett. 118 043502Google Scholar

    [23]

    Yoon J H, Wang Z, Kim K M, Wu H, Ravichandran V, Xia Q, Hwang C S, Yang J J 2018 Nat. Commun. 9 417Google Scholar

    [24]

    Jiang H, Belkin D, Savelev S E, Wang Z R, Li Y N, Joshi S, Midya R, Li C, Rao M Y, Barnell M, Wu Q, Yang J J, Xia Q F 2017 Nat. Commun. 8 882Google Scholar

    [25]

    Zhu W, Chen T P, Liu Y, Sun F 2012 J. Appl. Phys. 112 063706Google Scholar

    [26]

    Zhu W, Chen T P, Liu Z, Yang M, Liu Y, Sun F 2009 J. Appl. Phys. 106 093706Google Scholar

    [27]

    Zhang X, Wang W, Liu Q, Zhao X, Wei J, Cao R, Yao Z, Zhu X, Zhang F, Lü H 2018 IEEE Electron Device Lett. 39 308Google Scholar

    [28]

    Chen Y, Wang Y, Luo Y, Liu X, Tong Y 2019 IEEE Electron Device Lett. 40 1686Google Scholar

    [29]

    Jo S H, Chang T, Idongesit E, Bhavitavya B B, Pinaki M, Wei L 2010 Nano Lett. 10 1297Google Scholar

    [30]

    Wang Z R, Joshi S, , Savel’ev S E, Jiang H, Midya R, Lin P, Hu M, Ge N, Strachan J P, Li Z Y, Wu Q, Barne M, Li G L, Xin H L, Williams R S, Xia Q F, Yang J J 2017 Nat. Mater. 16 101Google Scholar

    [31]

    Pan X, Zheng Y, Shi Y M, Chen W 2021 ACS Materials lett. 3 235Google Scholar

    [32]

    张晨曦, 陈艳, 仪明东, 朱颖, 李腾飞, 刘露涛, 王来源, 解令海, 黄维 2018 中国科学: 信息科学 48 115Google Scholar

    Zhang C X, Chen Y, Yi D M, Zhu Y, Li T F, Liu L T, Wang L Y, Xie L H, Huang W 2018 Sci. Sin. Informationis 48 115Google Scholar

    [33]

    Neeraj P, Bipin R, Udayan G 2017 IEEE Electron Device Lett. 38 740Google Scholar

    [34]

    Cai W R, Frank E, Ronald T 2015 IEEE Trans. Biomed. Circuits. Syst. 9 87Google Scholar

    [35]

    Yang R, Huang H M, Hong Q H, Yin X B, Tan Z H, Shi T, Zhou Y X, Miao X S, Wang X P, Mi S B, Jia C L, Guo X 2018 Adv. Funct. Mater. 28 1704455Google Scholar

    [36]

    Rubin D C, Wenzel A E 1996 Psychol. Rev. 103 734Google Scholar

  • 图 1  (a) 器件TEM图; (b) 器件结构图; (c) 神经突触工作原理; (d) 连续100次正向电压扫描测试; (e) 连续100次负向电压扫描测试

    Figure 1.  (a) TEM result of bi-layer memristor; (b) structure of memristor; (c) mechanisms of synapse working; (d) continued positive I-V biasing with 100 times; (e) continued negative I-V biasing with another 100 times.

    图 2  器件内EPSC和IPSC的脉冲测 (a) 施加单个正向脉冲的EPSC; (b) 双脉冲易化的EPSC; (c) 施加双正向脉冲但间隔时间350 ms的EPSC; (d) 施加单个负向脉冲的IPSC; (e) 双脉冲抑制的IPSC; (f) 施加双负向脉冲但间隔时间350 ms的IPSC

    Figure 2.  Pulse voltage measurement of memristor: (a) EPSC with single positive pulse applied; (b) EPSC of PPF; (c) two positive pulses applied with 350 ms interval; (d) EPSC with single negative pulse applied; (e) IPSC of PPD; (f) two negative pulses applied with 350 ms interval.

    图 3  (a) 以100 Hz频率施加幅值和宽度为2 V和5 ms的正向脉冲, 器件权值随时间增加; (b) 以100 Hz频率施加幅值和宽度为–2 V和5 ms的负向脉冲, 器件权值随时间减小; (c) 以2 Hz频率施加幅值和宽度为2 V和5 ms的正向脉冲, 器件权值也会随时间减小

    Figure 3.  (a) Device conductance increased with 100 Hz, 2 V in amplitude and 5 ms in width positive voltage pulse applied; (b) device conductance decreased with 100 Hz, -2 V in amplitude and 5 ms in width positive voltage pulse applied; (c) device conductance will decrease with 2 Hz, 2 V in amplitude and 5 ms in width positive voltage pulse applied.

    图 4  (a) 器件权值与施加脉冲数量和脉冲间隔的关系; (b) 器件达到最大权值所需脉冲数量与脉冲电压和间隔的关系; (c) STDP特性

    Figure 4.  (a) The relationship of device conductance with pulse number and interval; (b) the pulse number needed to make device conductance maximized with different pulse voltage and interval; (c) STDP.

    图 5  (a) 后-前-后和前-后-前时序的神经元信号; (b) 三脉冲STDP器件权值的变化

    Figure 5.  (a) Singal with post-pre-post and pre-post-pre sequence; (b) triplet-STDP.

    图 6  分别施加10个(a), 50个(b), 100个(c)和200个(d) 幅值为1.2 V、宽度为5 ms的脉冲电压后器件权值随时间减弱的特性

    Figure 6.  The device conductance changed with time after applied (a) 10, (b) 50, (c) 100 and (d) 200 positive voltage pulses with the amplitude of 1.2 V and pulse width of 5 ms.

    图 7  (a) 器件最终权值与施加脉冲数量的关系; (b) 器件弛豫时间与施加脉冲数量的关系; (c) 器件弛豫时间与施加脉冲电压的关系

    Figure 7.  (a) The relationship between device conductance and applied pulse number; (b) the relationship between device relaxation time and applied pulse number; (c) the relationship between device relaxation time and applied pulse voltage.

    图 8  (a) 循环测试; (b) 耐久测试; (c) 175, 200, 225和250 ℃高温测试

    Figure 8.  (a) Duration study; (b) retention study at room and 50 ℃ temperature; (c) device failure time at high temperature 175, 200, 225 and 250 ℃.

    Baidu
  • [1]

    Pei J, Deng L, Song S, et al. 2019 Nature 572 106Google Scholar

    [2]

    Krestinskaya O, Salama K N, James A P 2020 Adv. Intell. Syst. 2 2000075Google Scholar

    [3]

    Shastri B J, Tait A N, Ferreira L T, Pernice W H P, Bhaskaran H, Wright C D, Prucnal P R 2021 Nat. Photonics 15 102Google Scholar

    [4]

    Abrol A, Fu Z, Salman M, Silva R, Du Y, Plis S, Calhoun V 2021 Nat. Commun. 12 353Google Scholar

    [5]

    Xia Q F, Yang J J, Publisher C 2019 Nat. Mater. 18 518Google Scholar

    [6]

    Lim D H, Wu S, Zhao R, Lee J H, Jeong H, Shi L 2021 Nat. Commun. 12 319Google Scholar

    [7]

    Demin V A, Nekhaev D V, Surazhevsky I A, Nikiruy K E, Emelyanov A V, Nikolaev S N, Rylkov V V, Kovalchuk M V 2021 Neural Networks 134 64Google Scholar

    [8]

    Irem B, Manuel L G, Nandakumar S R, Timoleon M, Thomas P, Tomas T, Bipin R, Yusuf L, Abu S, Evangelos E 2018 Nat. Commun. 9 25141

    [9]

    Wang Z Q, Xu H Y, Li X H, Yu H, Liu Y C, Zhu X J 2012 Adv. Funct. Mater. 22 2758Google Scholar

    [10]

    Zhang Y N, Tang J S, Li X Y, Gao B, He Q, Wu H Q 2021 Nat. Commun. 12 408Google Scholar

    [11]

    Liu L F, Yu D, Ma W J, Chen B, Zhang F F, Gao B, Kang J F 2015 Jpn. J Appl Phys 54 021802Google Scholar

    [12]

    Chen C, Yang Y C, Zeng F, Pan F 2010 Appl. Phys. Lett. 97 083502Google Scholar

    [13]

    Zhu W, Chen T P, Yang M, Liu Y, Fung S 2012 IEEE Trans. Electron Devices 59 2363

    [14]

    Zhao B, Xiao M, Zhou Y N 2019 Nanotechnology 30 425202Google Scholar

    [15]

    Gul F, Efeoglu H 2017 Ceram. Int. 43 10770Google Scholar

    [16]

    Bae S H, Lee S, Koo H, Lin L, Jo B H, Park C, Wang Z L 2013 Adv. Mater. 25 5098Google Scholar

    [17]

    Rodriguez F A, Cagli C, Perniola L, Miranda E, Sune J 2018 Microelectron. Eng. 195 101Google Scholar

    [18]

    Krishna K P, Dhanashri V D, Shraddha M B, Harshada S P, Suraj M M, Ajay S N, Sawanta S M, Chang K H, Sungjun K, Pramod S P, Tukaram D D 2019 J. Phys. D: Appl. Phys 52 175306Google Scholar

    [19]

    陈义豪, 徐威, 王钰琪, 万相, 李岳峰, 梁定康, 陆立群, 刘鑫伟, 连晓娟, 胡二涛, 郭宇峰, 许剑光, 童祎, 肖建 2019 68 098501Google Scholar

    Chen Y H, Xue W, Wang Y Q, Wan X, Li Y F, Liang D K, Lu L Q, Liu X W, Lian X J, Hu E T, Guo Y F, Xu J G, Tong Y, Xiao J 2019 Acta Phys. Sin 68 098501Google Scholar

    [20]

    Sahu D P, Jetty P, Jammalamadaka S N 2020 Nanotechnology 32 155701

    [21]

    Fyrigos I A, Ntinas V, Sirakoulis G C, Dimitrakis P, Karafyllidis I G 2021 IEEE Trans Nanotechnol. 20 113Google Scholar

    [22]

    Bai N, Tian B Y, Miao G Q, Xue K H, Wang T, Yuan J H, Liu X X, Li Z N, Guo S, Zhou Z P, Liu N, Lu H, Tang X D, Sun H J, Miao X S 2021 Appl. Phys. Lett. 118 043502Google Scholar

    [23]

    Yoon J H, Wang Z, Kim K M, Wu H, Ravichandran V, Xia Q, Hwang C S, Yang J J 2018 Nat. Commun. 9 417Google Scholar

    [24]

    Jiang H, Belkin D, Savelev S E, Wang Z R, Li Y N, Joshi S, Midya R, Li C, Rao M Y, Barnell M, Wu Q, Yang J J, Xia Q F 2017 Nat. Commun. 8 882Google Scholar

    [25]

    Zhu W, Chen T P, Liu Y, Sun F 2012 J. Appl. Phys. 112 063706Google Scholar

    [26]

    Zhu W, Chen T P, Liu Z, Yang M, Liu Y, Sun F 2009 J. Appl. Phys. 106 093706Google Scholar

    [27]

    Zhang X, Wang W, Liu Q, Zhao X, Wei J, Cao R, Yao Z, Zhu X, Zhang F, Lü H 2018 IEEE Electron Device Lett. 39 308Google Scholar

    [28]

    Chen Y, Wang Y, Luo Y, Liu X, Tong Y 2019 IEEE Electron Device Lett. 40 1686Google Scholar

    [29]

    Jo S H, Chang T, Idongesit E, Bhavitavya B B, Pinaki M, Wei L 2010 Nano Lett. 10 1297Google Scholar

    [30]

    Wang Z R, Joshi S, , Savel’ev S E, Jiang H, Midya R, Lin P, Hu M, Ge N, Strachan J P, Li Z Y, Wu Q, Barne M, Li G L, Xin H L, Williams R S, Xia Q F, Yang J J 2017 Nat. Mater. 16 101Google Scholar

    [31]

    Pan X, Zheng Y, Shi Y M, Chen W 2021 ACS Materials lett. 3 235Google Scholar

    [32]

    张晨曦, 陈艳, 仪明东, 朱颖, 李腾飞, 刘露涛, 王来源, 解令海, 黄维 2018 中国科学: 信息科学 48 115Google Scholar

    Zhang C X, Chen Y, Yi D M, Zhu Y, Li T F, Liu L T, Wang L Y, Xie L H, Huang W 2018 Sci. Sin. Informationis 48 115Google Scholar

    [33]

    Neeraj P, Bipin R, Udayan G 2017 IEEE Electron Device Lett. 38 740Google Scholar

    [34]

    Cai W R, Frank E, Ronald T 2015 IEEE Trans. Biomed. Circuits. Syst. 9 87Google Scholar

    [35]

    Yang R, Huang H M, Hong Q H, Yin X B, Tan Z H, Shi T, Zhou Y X, Miao X S, Wang X P, Mi S B, Jia C L, Guo X 2018 Adv. Funct. Mater. 28 1704455Google Scholar

    [36]

    Rubin D C, Wenzel A E 1996 Psychol. Rev. 103 734Google Scholar

  • [1] Huang Yu-Hang, Chen Li-Xiang. Fractional Fourier transform imaging based on untrained neural networks. Acta Physica Sinica, 2024, 73(9): 094201. doi: 10.7498/aps.73.20240050
    [2] Ma Rui-Yao, Wang Xin, Li Shu, Yong Heng, Shangguan Dan-Hua. An efficient calculation method for particle transport problems based on neural network. Acta Physica Sinica, 2024, 73(7): 072802. doi: 10.7498/aps.73.20231661
    [3] Chen Kai-Hui, Fan Zhen, Dong Shuai, Li Wen-Jie, Chen Yi-Hong, Tian Guo, Chen De-Yang, Qin Ming-Hui, Zeng Min, Lu Xu-Bing, Zhou Guo-Fu, Gao Xing-Sen, Liu Jun-Ming. Perovskite-phase interfacial intercalated layer-induced performance enhancement in SrFeOx-based memristors. Acta Physica Sinica, 2023, 72(9): 097301. doi: 10.7498/aps.72.20221934
    [4] Li Rui, Xu Bang-Lin, Zhou Jian-Fang, Jiang En-Hua, Wang Bing-Hong, Yuan Wu-Jie. A synaptic plasticity induced change in synaptic intensity variation and neurodynamic transition during awakening-sleep cycle. Acta Physica Sinica, 2023, 72(24): 248706. doi: 10.7498/aps.72.20231037
    [5] Fang Bo-Lang, Wang Jian-Guo, Feng Guo-Bin. Calculation of spot entroid based on physical informed neural networks. Acta Physica Sinica, 2022, 71(20): 200601. doi: 10.7498/aps.71.20220670
    [6] Li Jing, Sun Hao. Tag Z boson jets via convolutional neural networks. Acta Physica Sinica, 2021, 70(6): 061301. doi: 10.7498/aps.70.20201557
    [7] Ren Kuan, Zhang Ke-Jia, Qin Xi-Zi, Ren Huan-Xin, Zhu Shou-Hui, Yang Feng, Sun Bai, Zhao Yong, Zhang Yong. Research progress of neuromorphic computation based on memcapacitors. Acta Physica Sinica, 2021, 70(7): 078701. doi: 10.7498/aps.70.20201632
    [8] Wei De-Zhi, Chen Fu-Ji, Zheng Xiao-Xue. Internet public opinion chaotic prediction based on chaos theory and the improved radial basis function in neural networks. Acta Physica Sinica, 2015, 64(11): 110503. doi: 10.7498/aps.64.110503
    [9] Li Huan, Wang You-Guo. Noise-enhanced information transmission of a non-linear multilevel threshold neural networks system. Acta Physica Sinica, 2014, 63(12): 120506. doi: 10.7498/aps.63.120506
    [10] Chen Tie-Ming, Jiang Rong-Rong. New hybrid stream cipher based on chaos and neural networks. Acta Physica Sinica, 2013, 62(4): 040301. doi: 10.7498/aps.62.040301
    [11] Wang Rong, Wu Ying, Liu Shao-Bao. Effect of ion channel random blocking on the spatiotemporal dynamics of neuronal network. Acta Physica Sinica, 2013, 62(22): 220504. doi: 10.7498/aps.62.220504
    [12] Li Hua-Qing, Liao Xiao-Feng, Huang Hong-Yu. Synchronization of uncertain chaotic systems based on neural network and sliding mode control. Acta Physica Sinica, 2011, 60(2): 020512. doi: 10.7498/aps.60.020512
    [13] Zhao Hai-Quan, Zhang Jia-Shu. Adaptive nonlinear channel equalization based on combination neural network for chaos-based communication systems. Acta Physica Sinica, 2008, 57(7): 3996-4006. doi: 10.7498/aps.57.3996
    [14] Wang Yong-Sheng, Sun Jin, Wang Chang-Jin, Fan Hong-Da. Prediction of the chaotic time series from parameter-varying systems using artificial neural networks. Acta Physica Sinica, 2008, 57(10): 6120-6131. doi: 10.7498/aps.57.6120
    [15] Wang Rui-Min, Zhao Hong. The role of neuron transfer function in artificial neural networks. Acta Physica Sinica, 2007, 56(2): 730-739. doi: 10.7498/aps.56.730
    [16] Peng Jian-Hua, Yu Hong-Jie. Associative memory and segmentation in the neural system under stimulation of stochastic or chaotic perceptual singals. Acta Physica Sinica, 2007, 56(8): 4353-4360. doi: 10.7498/aps.56.4353
    [17] Xing Hong-Yan, Xu Wei. The neural networks method for detecting weak signals under chaotic background. Acta Physica Sinica, 2007, 56(7): 3771-3776. doi: 10.7498/aps.56.3771
    [18] Wang Yao-Nan, Tan Wen. Genetic-based neural network control for chaotic system. Acta Physica Sinica, 2003, 52(11): 2723-2728. doi: 10.7498/aps.52.2723
    [19] Tan Wen, Wang Yao-Nan, Liu Zhu-Run, Zhou Shao-Wu. . Acta Physica Sinica, 2002, 51(11): 2463-2466. doi: 10.7498/aps.51.2463
    [20] CHEN SHU, CHANG SHENG-JIANG, YUAN JING-HE, ZHANG YAN-XIN, K.W.WONG. ADAPTIVE TRAINING AND PRUNING FOR NEURAL NETWORKS:ALGORITHMS AND APPLICATION. Acta Physica Sinica, 2001, 50(4): 674-681. doi: 10.7498/aps.50.674
Metrics
  • Abstract views:  5373
  • PDF Downloads:  145
  • Cited By: 0
Publishing process
  • Received Date:  05 February 2021
  • Accepted Date:  02 March 2021
  • Available Online:  25 August 2021
  • Published Online:  05 September 2021

/

返回文章
返回
Baidu
map