-
Ionospheric modulation can artificially trigger ELF/VLF whistler waves, which can leak into the inner magnetosphere and contribute to resonant interactions with energetic electrons. Combining the ray tracing method and test particle simulations, we investigate the propagation of these artificially generated ELF/VLF waves through the high ionosphere into the inner magnetosphere, and evaluate the subsequent effects of resonant scattering energetic electrons near the heart of the outer radiation belt. The results show that the artificially triggered ELF/VLF waves become highly oblique in the magnetosphere and their spatial extent of L shell and magnetic latitude can be significantly controlled by the initial launch latitude. Corresponding to the principal first-order resonance, the energetic electrons from ~ 100 keV to 3 MeV can resonate with the artificial VLF waves with frequency above 10 kHz in the inner radiation belt, while in the outer radiation belt these hazardous electrons can resonate with ELF waves from ~100 Hz to 1 kHz. At L=4.5 as the focus in this study, the artificial ELF waves can resonate with 1 MeV electron at the harmonics N=-1, 1, 2. In contrast, the Landau resonance rarely occurs for these energetic electrons. The results of test particle simulations indicate that while wave-induced changes in pitch angle and kinetic energy of a single electron are stochastic, the change averaged over all test electrons increases monotonically within the resonance timescale, which implies that resonant scattering is an overall characteristic of energetic electrons under the influence of the artificial whistler waves. Computed resonant scattering rates based on the test particle simulations indicate that aritificial ELF/VLF waves with an observable in situ wave amplitude of ~ 10 pT can drive efficient local pitch angle scattering of energetic electrons at the magnetic equator, thereby contributing considerably to their precipitation loss and magnetospheric electron dynamics. When the waves become highly oblique during the propagation, besides the fundamental first order resonance, higher order resonances can also drive efficient electron scattering. The results support the feasibility of generating artificially ELF/VLF whistler waves for controlled removal of energetic electrons in the Earth radiation belts.
-
Keywords:
- wave-particle interactions /
- test particle simulations /
- ELF/VLF whistler waves /
- ionospheric modification
[1] Thorne R M 2010 Geophys. Res. Lett. 37 L22107
[2] Abel B, Thorne R M 1998 J. Geophys. Res. 103 2385
[3] Abel B, Thorne R M 1998 J. Geophys. Res. 103 2397
[4] Xiao F L, He Z G, Zhang S, Su Z P, Chen L X 2011 Chin. Phys. Lett. 28 039401
[5] Zhang S, Xiao F L 2010 Chin. Phys. Lett. 27 129401
[6] Summers D, Ni B B, Meredith N P 2007 J. Geophys. Res. 112 A04207
[7] Summers D, Ni B B, Horne R B, Thorn R M, Moldwin M B, Anderson R R 2008 J. Geophys. Res. 113 A04219
[8] Qureshi M N S, Sehar S, Shah H A, Cao J B 2013 Chin. Phys. B 22 035201
[9] Chen Y, Zhao D, Liu W X, Wang Y, Wan X S 2012 Chin. Phys. B 20 104103
[10] Zahedian M, Maraghechi B, Rouhani M H 2012 Chin. Phys. B 21 034101
[11] Jiang H, Yang X X, Lin M M, Shi Y R, Duan W S 2011 Chin. Phys. B 20 019401
[12] Inan U S, Chang H C, Helliwell R A 1984 J. Geophys. Res. 89 2891
[13] Lyons L R, Thorne R M, Kennel C F 1972 J. Geophys. Res. 77 3455
[14] Inan U S, Bell T F, Bortnik J, Albert J M 2003 J. Geophys. Res. 108 1186
[15] Albert J M 2001 J. Geophys. Res. 106 8477
[16] Kulkarni P, Inan U S, Bell T F, Bortnik J 2010 J. Geophys. Res. 113 A07214
[17] Bell T F, Inan U S, Platino M, Pickett J S, Kosseg P A, Kennedy E J 2004 Geophys. Res. Lett. 31 L06811
[18] Platino M, Inan U S, Bell T F, Pickett J, Kennedy E J, Trotignon J G, Ranch J L, Canu P 2004 Ann. Geophys. 22 2643
[19] Platino M, Inan U S, Bell T F, Parrot M, Kennedy E J 2006 Geophys. Res. Lett. 33 L16101
[20] Piddyachiy D, Inan U S, Bell T F, Lehtinen N G, Parrot M 2008 J. Geophys. Res. 113 A10308
[21] Gu X D, Zhao Z Y, Ni B B, Wang X, Deng F 2008 Acta Phys. Sin. 57 6673 (in Chinese) [顾旭东, 赵正予, 倪彬彬, 王翔, 邓锋 2008 57 6673]
[22] Wang P, Wang H Y, Ma Y Q, Li X Q, Lu H, Meng X C, Zhang J L, Wang H, Shi F, Xu Y B, Yu X X, Zhao X Y, Wu F 2010 Acta Phys. Sin. 60 039401 (in chinese) [王平, 王焕玉, 马宇蒨, 李新乔, 卢红, 孟祥承, 张吉龙, 王辉, 石峰, 徐岩冰, 于晓霞, 赵小芸, 吴峰 2010 60 039401]
[23] Bortnik J, Thorne R M 2010 J. Geophys. Res. 115 A07213
[24] Tao X, Bortnik J 2010 Nonlin. Processes Geophys. 17 599
[25] Tao X, Bortnik J, Albert J M, Liu K, Thorne R M 2011 Geophys. Res. Lett. 38 L06105
[26] Walter F 1969 Ph. D. Dissertation (California: Stanford Electronics Laboratories)
[27] Wang F, Zhao Z Y, Chang S S, Ni B B, Gu X D 2012 Acta Phys. Sin. 61 199401 (in Chinese) [汪枫, 赵正予, 常珊珊, 倪彬彬, 顾旭东 2012 61 199401]
[28] Inan U S, Bell T F 1977 J. Geophys. Res. 19 2819
[29] Xu J S, Mo Q X 1989 Chin. J. Geophys. 32 256 (in Chinese) [徐继生, 莫起绪 1989 地球 32 256]
[30] Chang S S, Zhao Z Y 2011 Chin. J. Geophys. 54 2458 (in Chinese) [常珊珊, 赵正予, 汪枫 2011 地球 54 2458]
[31] Helliwell R A 1965 Whistler and Related Ionospheric Phenomena (California: Stanford University Press)
[32] Shi R, Ni B B, Gu X D, Zhao Z Y, Zhou C 2012 Phys. Plasmas 19 072904
[33] Tao X, Bortnik J, Albert M J, Richard T M 2012 J. Geophys. Res. 117 A10205
-
[1] Thorne R M 2010 Geophys. Res. Lett. 37 L22107
[2] Abel B, Thorne R M 1998 J. Geophys. Res. 103 2385
[3] Abel B, Thorne R M 1998 J. Geophys. Res. 103 2397
[4] Xiao F L, He Z G, Zhang S, Su Z P, Chen L X 2011 Chin. Phys. Lett. 28 039401
[5] Zhang S, Xiao F L 2010 Chin. Phys. Lett. 27 129401
[6] Summers D, Ni B B, Meredith N P 2007 J. Geophys. Res. 112 A04207
[7] Summers D, Ni B B, Horne R B, Thorn R M, Moldwin M B, Anderson R R 2008 J. Geophys. Res. 113 A04219
[8] Qureshi M N S, Sehar S, Shah H A, Cao J B 2013 Chin. Phys. B 22 035201
[9] Chen Y, Zhao D, Liu W X, Wang Y, Wan X S 2012 Chin. Phys. B 20 104103
[10] Zahedian M, Maraghechi B, Rouhani M H 2012 Chin. Phys. B 21 034101
[11] Jiang H, Yang X X, Lin M M, Shi Y R, Duan W S 2011 Chin. Phys. B 20 019401
[12] Inan U S, Chang H C, Helliwell R A 1984 J. Geophys. Res. 89 2891
[13] Lyons L R, Thorne R M, Kennel C F 1972 J. Geophys. Res. 77 3455
[14] Inan U S, Bell T F, Bortnik J, Albert J M 2003 J. Geophys. Res. 108 1186
[15] Albert J M 2001 J. Geophys. Res. 106 8477
[16] Kulkarni P, Inan U S, Bell T F, Bortnik J 2010 J. Geophys. Res. 113 A07214
[17] Bell T F, Inan U S, Platino M, Pickett J S, Kosseg P A, Kennedy E J 2004 Geophys. Res. Lett. 31 L06811
[18] Platino M, Inan U S, Bell T F, Pickett J, Kennedy E J, Trotignon J G, Ranch J L, Canu P 2004 Ann. Geophys. 22 2643
[19] Platino M, Inan U S, Bell T F, Parrot M, Kennedy E J 2006 Geophys. Res. Lett. 33 L16101
[20] Piddyachiy D, Inan U S, Bell T F, Lehtinen N G, Parrot M 2008 J. Geophys. Res. 113 A10308
[21] Gu X D, Zhao Z Y, Ni B B, Wang X, Deng F 2008 Acta Phys. Sin. 57 6673 (in Chinese) [顾旭东, 赵正予, 倪彬彬, 王翔, 邓锋 2008 57 6673]
[22] Wang P, Wang H Y, Ma Y Q, Li X Q, Lu H, Meng X C, Zhang J L, Wang H, Shi F, Xu Y B, Yu X X, Zhao X Y, Wu F 2010 Acta Phys. Sin. 60 039401 (in chinese) [王平, 王焕玉, 马宇蒨, 李新乔, 卢红, 孟祥承, 张吉龙, 王辉, 石峰, 徐岩冰, 于晓霞, 赵小芸, 吴峰 2010 60 039401]
[23] Bortnik J, Thorne R M 2010 J. Geophys. Res. 115 A07213
[24] Tao X, Bortnik J 2010 Nonlin. Processes Geophys. 17 599
[25] Tao X, Bortnik J, Albert J M, Liu K, Thorne R M 2011 Geophys. Res. Lett. 38 L06105
[26] Walter F 1969 Ph. D. Dissertation (California: Stanford Electronics Laboratories)
[27] Wang F, Zhao Z Y, Chang S S, Ni B B, Gu X D 2012 Acta Phys. Sin. 61 199401 (in Chinese) [汪枫, 赵正予, 常珊珊, 倪彬彬, 顾旭东 2012 61 199401]
[28] Inan U S, Bell T F 1977 J. Geophys. Res. 19 2819
[29] Xu J S, Mo Q X 1989 Chin. J. Geophys. 32 256 (in Chinese) [徐继生, 莫起绪 1989 地球 32 256]
[30] Chang S S, Zhao Z Y 2011 Chin. J. Geophys. 54 2458 (in Chinese) [常珊珊, 赵正予, 汪枫 2011 地球 54 2458]
[31] Helliwell R A 1965 Whistler and Related Ionospheric Phenomena (California: Stanford University Press)
[32] Shi R, Ni B B, Gu X D, Zhao Z Y, Zhou C 2012 Phys. Plasmas 19 072904
[33] Tao X, Bortnik J, Albert M J, Richard T M 2012 J. Geophys. Res. 117 A10205
Catalog
Metrics
- Abstract views: 6233
- PDF Downloads: 538
- Cited By: 0