Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Synchronization between FitzHugh-Nagumo neurons coupled with phototube

Zhang Xiu-Fang Ma Jun Xu Ying Ren Guo-Dong

Citation:

Synchronization between FitzHugh-Nagumo neurons coupled with phototube

Zhang Xiu-Fang, Ma Jun, Xu Ying, Ren Guo-Dong
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • The photoreceptors can receive all kinds of visible light which is translated to the bioelectrical signal for the visual cortex. The function would be simulated by the photoelectric effect. This paper studies the dynamic characteristics of FitzHugh-Nagumo neurons coupled with a phototube. In the parameter space of phototube, the synchronization region of the coupled system in which the neuron mode is in chaos and burst, is discussed in detail; the data show that the forced resonance is prominent in the complete synchronization of the system when the coupling strength is low, while the phase synchronization is observed in numerical experiment when the coupling strength is strong. The active operation of the phototube, as well the inverse cutoff voltage can modulate the synchronization of the system. Our work can be used to understand the mechanism of the retinal diseases, such as macular degeneration.
      Corresponding author: Ren Guo-Dong, rengd@lut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11672122, 12062009) and the Natural Science Foundation of Gansu Province, China (Grant No. 20JR5RA473)
    [1]

    Ma J, Song X, Jin W, Wang C 2015 Chaos, Solitons Fractals 80 31Google Scholar

    [2]

    Iqbal M, Rehan M, Hong K S 2017 Plos One 12 e0176986Google Scholar

    [3]

    Sotero R C, Trujillo-Barreto N J 2008 Neuroimage 39 290Google Scholar

    [4]

    Izhikevich E M 2004 IEEE Trans. Neural Networks 15 1063Google Scholar

    [5]

    Ibarz B, Casado J M, Sanjuán M A F 2011 Phys. Rep. 501 1Google Scholar

    [6]

    Hodgkin A L, Huxley A F 1990 Bull. Math. Biol. 52 25Google Scholar

    [7]

    Fitzhugh R 1961 Biophys. J. 1 445Google Scholar

    [8]

    Shilnikov A 2012 Nonlinear Dyn. 68 305Google Scholar

    [9]

    Miesenbock G, Kevrekidis I G 2005 Annu. Rev. Neurosci. 28 533Google Scholar

    [10]

    Gu H, Pan B 2015 Nonlinear Dyn. 81 2107Google Scholar

    [11]

    Pikovskii A, Rabinovich M 1978 Dokl. Akad. Nauk SSSR 239 301

    [12]

    Lv M, Wang C, Ren G, Ma J, Song X 2016 Nonlinear Dyn. 85 1479Google Scholar

    [13]

    Baines P G 2008 Prog. Phys. Geogr. 32 475Google Scholar

    [14]

    Zhang X, Wang C, Ma J, Ren G 2020 Mod. Phys. Lett. B 2050267Google Scholar

    [15]

    Zhang G, Ma J, Alsaedi A, Ahmad B, Alzahrani F 2018 Appl. Math. Comput. 321 290Google Scholar

    [16]

    Yao Z, Ma J, Yao Y, Wang C 2019 Nonlinear Dyn. 96 205Google Scholar

    [17]

    Xu Y M, Yao Z, Hobiny A, Ma J 2019 Front. Inform. Tech. El. 20 571Google Scholar

    [18]

    Liu Z, Wang C, Jin W, Ma J 2019 Nonlinear Dyn. 97 2661Google Scholar

    [19]

    Tosini G, Doyle S, Geusz M, Menaker M 2000 Proc. Natl. Acad. Sci. 97 11540Google Scholar

    [20]

    Menaker M 1972 Sci. Am. 226 22Google Scholar

    [21]

    Kennedy D 1958 Am. J. Ophthal. 46 19Google Scholar

    [22]

    Martenson M E, Halawa O I, Tonsfeldt K J, et al. 2016 Pain 157 868Google Scholar

    [23]

    Liu Y, Xu W J, Ma J, Alzahrani F, Hobiny A 2020 Front. Inform. Tech. El. 21 1387Google Scholar

    [24]

    Li J R, Wang J P, Jiang L 1994 Biosens. Bioelectron. 9 147Google Scholar

    [25]

    Zou W, Senthilkumar D V, Zhan M, Kurths J 2013 Phys. Rev. Lett. 111 014101Google Scholar

    [26]

    Wu Y, Xiao J, Hu G, Zhan M 2012 EPL 97 40005Google Scholar

    [27]

    Perc M 2009 Biophys. Chem. 141 175Google Scholar

    [28]

    Lin W, Wang Y, Ying H, Lai Y C, Wang X 2015 Phys. Rev. E 92 012912Google Scholar

    [29]

    张平伟, 唐国宁, 罗晓曙 2005 54 3497Google Scholar

    Zhang P W, Tang G N, Luo X S 2005 Acta Phys. Sin. 54 3497Google Scholar

    [30]

    Wouapi K M, Fotsin B H, Louodop F P, Feudjio K F, Njitacke Z T, Djeudjo T H 2020 Cogn. Neurodyn. 14 375Google Scholar

    [31]

    Shafiei M, Jafari S, Parastesh F, Ozer M, Kapitaniak T, Perc M 2020 Commun. Nonlinear Sci. Numer. Simul. 84 105175Google Scholar

    [32]

    Phan C, You Y 2020 Nonlinear. Anal.-Real 55 103139Google Scholar

    [33]

    Moayeri M M, Rad J A, Parand K 2020 Comput. Math. Appl. 80 1887Google Scholar

    [34]

    Makovkin S Y, Shkerin I V, Gordleeva S Y, Ivanchenko M V 2020 Chaos, Solitons Fractals 138 109951Google Scholar

    [35]

    Zou Y L, Zhu J, Chen G, Luo X S 2005 Chaos, Solitons Fractals 25 1245Google Scholar

    [36]

    Zhou S, Hong Y, Yang Y, Lü L, Li C 2020 Pramana J. Phys. 94 34Google Scholar

    [37]

    Venkatesh P, Venkatesan A, Lakshmanan M 2016 Pramana J. Phys. 86 1195Google Scholar

    [38]

    Sivaganesh G, Sweetlin M D, Arulgnanam A 2016 J. Korean Phys. Soc. 69 124Google Scholar

    [39]

    Binczak S, Jacquir S, Bilbault J M, Kazantsev V B, Nekorkin V I 2006 Neural Networks 19 684Google Scholar

    [40]

    Wade J J, Mcdaid L J, Harkin J, Crunelli V, Kelso J S 2011 PloS One 6 e29445Google Scholar

    [41]

    Sambas A, WS M S, Mamat M 2015 J. Eng. Sci. Tech. Rev. 8 89Google Scholar

    [42]

    Daoudal G, Hanada Y, Debanne D 2002 PNAS 99 14512Google Scholar

    [43]

    Chorev E, Brecht M 2012 J. Neurophysiol. 108 1584Google Scholar

    [44]

    杨永霞, 李玉叶, 古光华 2020 69 040501Google Scholar

    Yhang Y X, Li Y Y, Gu G H 2020 Acta Phys. Sin. 69 040501Google Scholar

    [45]

    汪芃, 李倩昀, 唐国宁 2018 67 030502Google Scholar

    Wang P, Li Q Y, Tang G N 2018 Acta Phys. Sin. 67 030502Google Scholar

    [46]

    FitzHugh R 1955 Bull. Math. Biophys. 17 257Google Scholar

    [47]

    Nagumo J, Arimoto S, Yoshizawa S 1962 Proc. IRE 50 2061Google Scholar

    [48]

    Kawato M, Suzuki R 1980 J. Theor. Biol. 86 547Google Scholar

    [49]

    Okuda M 1981 Prog. Theor. Phys. 66 90Google Scholar

    [50]

    Treutlein H, Schulten K 1985 Ber. Bunse. Ges. Phys. Chem. 89 710Google Scholar

    [51]

    Rajasekar S, Lakshmanan M 1988 J. Theor. Biol. 133 473Google Scholar

    [52]

    Einstein A 1905 Ann. Physik. 17 132

  • 图 1  FHN神经元的等效电路图

    Figure 1.  Equivalent circuit diagram of FHN neuron.

    图 2  光电管的电流-电压特性

    Figure 2.  I-V characteristics of phototube.

    图 3  光电管耦合FHN神经元系统的等效电路图

    Figure 3.  Equivalent circuit diagram of the coupled FHN neuron system.

    图 4  单个FHN神经元在不同参数下的ISI (a) b = 0.8, c = 0.1; (b) a = 0.7, c = 0.1; (c) a = 0.7, b = 0.8

    Figure 4.  ISI of single FHN neuron with different parameters: (a) b = 0.8, c = 0.1; (b) a = 0.7, c = 0.1; (c) a = 0.7, b = 0.8.

    图 5  耦合系统中神经元的ISI和放电序列(f = 0.16) (a) ua = 0.1; (b) I0 = 1.5, ua = 0.1; (c) I0 = 2.5, ua = 0.1; (d) I0 = 0.3; (e) ua = 1.5, I0 = 0.3; (f) ua = 2.3, I0 = 0.3

    Figure 5.  ISI and the firing sequence of neuron in the coupled system (f = 0.16): (a) ua = 0.1; (b) I0 = 1.5, ua = 0.1; (c) I0 = 2.5, ua = 0.1; (d) I0 = 0.3; (e) ua = 1.5, I0 = 0.3; (f) ua = 2.5, I0 = 0.3.

    图 6  uaI0的参数空间中, 耦合系统(case 1)的同步区间 (a)最大误差函数θmax; (b)最大相位差∆ϕmax

    Figure 6.  Synchronization region of the coupled system (case 1) in the parameter space of ua vs. I0: (a) Maximum error function θmax; (b) maximum phase difference ∆ϕmax.

    图 7  误差函数、相位差和功率随时间的演化(ua = 0.1) (a), (e), (i) I0 = 0.01; (b), (f), (j) I0 = 0.2; (c), (g), (k) I0 = 0.8; (d), (h), (l) I0 = 1

    Figure 7.  Evolution of error function, phase difference and power (ua = 0.1): (a), (e), (i) I0 = 0.01; (b), (f), (j) I0 = 0.2; (c), (g), (k) I0 = 0.8; (d), (h), (l) I0 = 1.

    图 8  系统误差与相位差随时间的演化(ua = 0.5) (a), (e) I0 = 0.01; (b), (f) I0 = 0.2; (c), (g) I0 = 0.8; (d), (h) I0 = 1

    Figure 8.  Evolution of error function and phase error (ua = 0.5): (a), (e) I0 = 0.01; (b), (f) I0 = 0.2; (c), (g) I0 = 0.8; (d), (h) I0 = 1.

    图 9  耦合系统中神经元的ISI和放电序列(f = 0.002) (a) ua = 0.01; (b) I0 = 0.5, ua = 0.01; (c) I0 = 1.5, ua = 0.01; (d) I0 = 0.3; (e) ua = 0.5, I0 = 0.3; (f) ua = 1.5, I0 = 0.3

    Figure 9.  ISI and the firing sequence of neuron in the coupled system (f = 0.002): (a) ua = 0.01; (b) I0 = 0.5, ua = 0.1; (c) I0 = 1.5, ua = 0.1; (d) I0 = 0.3; (e) ua = 0.5, I0 = 0.3; (f) ua = 1.5, I0 = 0.3.

    图 10  uaI0的参数空间中, 耦合系统(case 3)的同步区间 (a)最大误差函数θmax; (b)最大相位差∆ϕmax

    Figure 10.  Synchronization region of the coupled system (case 3) in the parameter space of ua vs. I0: (a) Maximum error function θmax; (b) maximum phase difference ∆ϕmax.

    图 11  最大误差函数和最大相位差随参数的变化(灰色曲线为(6)式中的非线性耦合, 红色曲线为线性耦合) (a), (b) ua = 0.01; (c), (d) I0 = 0.001

    Figure 11.  The maximum error function and the maximum phase difference change with the parameters, the grey curve represents the nonlinear coupling in Eq. (6) and the red curve is the linear one: (a), (b) ua = 0.01; (c), (d) I0 = 0.001.

    图 12  系统误差、相位差和光电管功率随时间的演化(ua = 0.01) (a), (e), (i) I0 = 0.001; (b), (f), (j) I0 = 0.01; (c), (g), (k) I0 = 0.013; (d), (h), (l) I0 = 0.014

    Figure 12.  Evolution of error function, phase error and phototube power (ua = 0.01): (a), (e), (i) I0 = 0.001; (b), (f), (j) I0 = 0.01; (c), (g), (k) I0 = 0.013; (d), (h), (l) I0 = 0.014.

    图 13  系统误差与相位差随时间的演化(ua = 0.5) (a), (e) I0 = 0.001; (b), (f) I0 = 0.01; (c), (g) I0 = 0.013; (d), (h) I0 = 0.014

    Figure 13.  Evolution of error function and phase error for variables (ua = 0.5): (a), (e) I0 = 0.001; (b), (f) I0 = 0.01; (c), (g) I0 = 0.013; (d), (h) I0 = 0.014.

    表 1  不同外界刺激频率下的耦合FHN神经元分类

    Table 1.  Category of the coupled FHN neurons driven by external stimulation with different frequencies.

    频率f0.160.0020.0120.06
    放电状态混沌放电簇放电尖峰放电周期放电
    反向截止电压ua0.10.50.010.50.010.50.010.5
    耦合分类case 1case 2case 3case 4case 5case 6case 7case 8
    DownLoad: CSV
    Baidu
  • [1]

    Ma J, Song X, Jin W, Wang C 2015 Chaos, Solitons Fractals 80 31Google Scholar

    [2]

    Iqbal M, Rehan M, Hong K S 2017 Plos One 12 e0176986Google Scholar

    [3]

    Sotero R C, Trujillo-Barreto N J 2008 Neuroimage 39 290Google Scholar

    [4]

    Izhikevich E M 2004 IEEE Trans. Neural Networks 15 1063Google Scholar

    [5]

    Ibarz B, Casado J M, Sanjuán M A F 2011 Phys. Rep. 501 1Google Scholar

    [6]

    Hodgkin A L, Huxley A F 1990 Bull. Math. Biol. 52 25Google Scholar

    [7]

    Fitzhugh R 1961 Biophys. J. 1 445Google Scholar

    [8]

    Shilnikov A 2012 Nonlinear Dyn. 68 305Google Scholar

    [9]

    Miesenbock G, Kevrekidis I G 2005 Annu. Rev. Neurosci. 28 533Google Scholar

    [10]

    Gu H, Pan B 2015 Nonlinear Dyn. 81 2107Google Scholar

    [11]

    Pikovskii A, Rabinovich M 1978 Dokl. Akad. Nauk SSSR 239 301

    [12]

    Lv M, Wang C, Ren G, Ma J, Song X 2016 Nonlinear Dyn. 85 1479Google Scholar

    [13]

    Baines P G 2008 Prog. Phys. Geogr. 32 475Google Scholar

    [14]

    Zhang X, Wang C, Ma J, Ren G 2020 Mod. Phys. Lett. B 2050267Google Scholar

    [15]

    Zhang G, Ma J, Alsaedi A, Ahmad B, Alzahrani F 2018 Appl. Math. Comput. 321 290Google Scholar

    [16]

    Yao Z, Ma J, Yao Y, Wang C 2019 Nonlinear Dyn. 96 205Google Scholar

    [17]

    Xu Y M, Yao Z, Hobiny A, Ma J 2019 Front. Inform. Tech. El. 20 571Google Scholar

    [18]

    Liu Z, Wang C, Jin W, Ma J 2019 Nonlinear Dyn. 97 2661Google Scholar

    [19]

    Tosini G, Doyle S, Geusz M, Menaker M 2000 Proc. Natl. Acad. Sci. 97 11540Google Scholar

    [20]

    Menaker M 1972 Sci. Am. 226 22Google Scholar

    [21]

    Kennedy D 1958 Am. J. Ophthal. 46 19Google Scholar

    [22]

    Martenson M E, Halawa O I, Tonsfeldt K J, et al. 2016 Pain 157 868Google Scholar

    [23]

    Liu Y, Xu W J, Ma J, Alzahrani F, Hobiny A 2020 Front. Inform. Tech. El. 21 1387Google Scholar

    [24]

    Li J R, Wang J P, Jiang L 1994 Biosens. Bioelectron. 9 147Google Scholar

    [25]

    Zou W, Senthilkumar D V, Zhan M, Kurths J 2013 Phys. Rev. Lett. 111 014101Google Scholar

    [26]

    Wu Y, Xiao J, Hu G, Zhan M 2012 EPL 97 40005Google Scholar

    [27]

    Perc M 2009 Biophys. Chem. 141 175Google Scholar

    [28]

    Lin W, Wang Y, Ying H, Lai Y C, Wang X 2015 Phys. Rev. E 92 012912Google Scholar

    [29]

    张平伟, 唐国宁, 罗晓曙 2005 54 3497Google Scholar

    Zhang P W, Tang G N, Luo X S 2005 Acta Phys. Sin. 54 3497Google Scholar

    [30]

    Wouapi K M, Fotsin B H, Louodop F P, Feudjio K F, Njitacke Z T, Djeudjo T H 2020 Cogn. Neurodyn. 14 375Google Scholar

    [31]

    Shafiei M, Jafari S, Parastesh F, Ozer M, Kapitaniak T, Perc M 2020 Commun. Nonlinear Sci. Numer. Simul. 84 105175Google Scholar

    [32]

    Phan C, You Y 2020 Nonlinear. Anal.-Real 55 103139Google Scholar

    [33]

    Moayeri M M, Rad J A, Parand K 2020 Comput. Math. Appl. 80 1887Google Scholar

    [34]

    Makovkin S Y, Shkerin I V, Gordleeva S Y, Ivanchenko M V 2020 Chaos, Solitons Fractals 138 109951Google Scholar

    [35]

    Zou Y L, Zhu J, Chen G, Luo X S 2005 Chaos, Solitons Fractals 25 1245Google Scholar

    [36]

    Zhou S, Hong Y, Yang Y, Lü L, Li C 2020 Pramana J. Phys. 94 34Google Scholar

    [37]

    Venkatesh P, Venkatesan A, Lakshmanan M 2016 Pramana J. Phys. 86 1195Google Scholar

    [38]

    Sivaganesh G, Sweetlin M D, Arulgnanam A 2016 J. Korean Phys. Soc. 69 124Google Scholar

    [39]

    Binczak S, Jacquir S, Bilbault J M, Kazantsev V B, Nekorkin V I 2006 Neural Networks 19 684Google Scholar

    [40]

    Wade J J, Mcdaid L J, Harkin J, Crunelli V, Kelso J S 2011 PloS One 6 e29445Google Scholar

    [41]

    Sambas A, WS M S, Mamat M 2015 J. Eng. Sci. Tech. Rev. 8 89Google Scholar

    [42]

    Daoudal G, Hanada Y, Debanne D 2002 PNAS 99 14512Google Scholar

    [43]

    Chorev E, Brecht M 2012 J. Neurophysiol. 108 1584Google Scholar

    [44]

    杨永霞, 李玉叶, 古光华 2020 69 040501Google Scholar

    Yhang Y X, Li Y Y, Gu G H 2020 Acta Phys. Sin. 69 040501Google Scholar

    [45]

    汪芃, 李倩昀, 唐国宁 2018 67 030502Google Scholar

    Wang P, Li Q Y, Tang G N 2018 Acta Phys. Sin. 67 030502Google Scholar

    [46]

    FitzHugh R 1955 Bull. Math. Biophys. 17 257Google Scholar

    [47]

    Nagumo J, Arimoto S, Yoshizawa S 1962 Proc. IRE 50 2061Google Scholar

    [48]

    Kawato M, Suzuki R 1980 J. Theor. Biol. 86 547Google Scholar

    [49]

    Okuda M 1981 Prog. Theor. Phys. 66 90Google Scholar

    [50]

    Treutlein H, Schulten K 1985 Ber. Bunse. Ges. Phys. Chem. 89 710Google Scholar

    [51]

    Rajasekar S, Lakshmanan M 1988 J. Theor. Biol. 133 473Google Scholar

    [52]

    Einstein A 1905 Ann. Physik. 17 132

Metrics
  • Abstract views:  7103
  • PDF Downloads:  151
  • Cited By: 0
Publishing process
  • Received Date:  19 November 2020
  • Accepted Date:  28 February 2021
  • Available Online:  26 April 2021
  • Published Online:  05 May 2021

/

返回文章
返回
Baidu
map