-
Hyperelastic materials, which have strong nonlinear mechanical properties, are commonly used in the engineering field. The application of hyperelastic materials to the water entry problem is a new interdisciplinary research topic. Unlike the water entering into a traditional rigid sphere, the hyperelastic sphere is very easy to deform during water entry. In order to explore the fluid-structure coupling problem with large deformations during water entry, a high-speed camera is used to study the problem of vertical water entering into hyperelastic sphere in this paper. Based on the experimental results, the effects of the material properties and impacting conditions on the cavity flow and sphere deformation behaviors during water entry are compared and analyzed. The experimental results show that the formation of the nested cavity after impacting a free surface of the hyperelastic sphere needs large enough impact conditions and small material shear modulus. The time for the nested cavity to be formed and retained during water entry is related to the material shear modulus and sphere diameter. The sphere displacement and length of cavity formed by the hyperelastic sphere increase with the increase of the impact velocity and material shear modulus, but decrease with the increase of the diameter of the sphere. The increase of the impacting velocity can only aggravate the deformation behaviors of the hyperelastic sphere, but does not affect the formation moment of the nested cavity. In addition, the characteristics for the deformation behaviors of the hyperelastic sphere to vary with the Froude number and the dimensionless ratio of material shear modulus to impacting hydrodynamic pressure are described and studied.
-
Keywords:
- hyperelastic spheres /
- water entry /
- nested cavity /
- deformation
[1] Kubota Y, Mochizuki O 2015 WJM 5 129Google Scholar
[2] Epps B P, Techet A H 2007 Exp. Fluids. 43 691Google Scholar
[3] Sun T, Wang H, Zou L, Zong Z, Li H 2019 Ocean. Eng. 194 106597Google Scholar
[4] Xia W, Cong W, Wei Y, Li C 2020 Appl. Ocean. Res. 103 102322Google Scholar
[5] Xia W X, Wang C, Wei Y J, Li J C, Yang L 2020 Exp. Fluids. 61 57Google Scholar
[6] Worthington A M, Cole R S 1897 Philos. Trans. R. Soc. London 189 137Google Scholar
[7] Worthington A M 1881 P. Roy. Soc. A. Math Phy. 33 347
[8] Wood R W 1909 Science 29 464Google Scholar
[9] Duclaux V, Caillé F, Duez C, Ybert C, Bocquet L, Clanet C 2007 J. Fluid Mech. 591 1Google Scholar
[10] Seddon C M, Moatamedi M 2006 Int. J. Impact. Eng. 32 1045Google Scholar
[11] May A 1952 J. Appl. Phys. 23 1362Google Scholar
[12] Yang L, Wei Y, Wang C, Xia W, Li J 2020 J. Appl. Phys. 127 064901Google Scholar
[13] Truscott T T, Epps B P, Techet A H 2012 J. Fluid Mech. 704 173Google Scholar
[14] Aristoff J M, Truscott T T, Techet A H, Bush J W M 2010 Phys. Fluids 22 70
[15] Aristoff J M, Bush J W M 2009 J. Fluid Mech. 619 45Google Scholar
[16] 何春涛, 王聪, 何乾坤, 仇洋 2012 61 134701Google Scholar
He C T, Wang C, He Q K, Qiu Y 2012 Acta Phys. Sin. 61 134701Google Scholar
[17] 施红辉, 周浩磊, 吴岩, 贾会霞, 张晓萍, 周素云, 章利特, 董若凌 2012 力学学报 44 49Google Scholar
Shi H H, Zhou H L, Wu Y, Jia H X, Zhang X P, Zhou S Y, Zhang L T, Dong R L 2012 J. Mech. Phys. Solids. 44 49Google Scholar
[18] 李佳川, 魏英杰, 王聪, 邓环宇 2016 65 204703Google Scholar
Li J C, Wei Y J, Wang C, Deng H Y 2016 Acta Phys. Sin. 65 204703Google Scholar
[19] 李佳川, 魏英杰, 王聪 2019 兵工学报 40 124Google Scholar
Li J C, Wei Y J, Wang C 2019 Acta. Armamentarii. 40 124Google Scholar
[20] 卢佳兴, 魏英杰, 王聪, 路丽睿, 许昊 2019 力学学报 51 150
Lu J X, Wei Y J, Wang C, Lu L R, Xu H 2019 J. Mech. Phys. Solids. 51 150
[21] Yun H, Lyu X, Wei Z 2020 Ocean. Eng. 201 107143Google Scholar
[22] Yun H, Lyu X, Wei Z 2020 J. Visual. Japan. 23 49Google Scholar
[23] Truscott T T, Epps B P, Belden J 2014 Annu. Rev. Fluid Mech. 46 355Google Scholar
[24] Truscott T T, Techet A H 2006 Phys. Fluids 18 4173
[25] Speirs N B, Mansoor M M, Belden J, Truscott T T 2019 J. Fluid Mech. 862 R3Google Scholar
[26] Russo S, Biscarini C, Facci A L, Falcucci G, Jannelli E 2017 J. Mar Sci Tech. Japan. 23 67
[27] Facci A L, Falcucci G, Agresta A, Biscarini C 2019 Water 11 1048Google Scholar
[28] Russo S, Falcucci G 2018 ICNAAM. Greece 1987 25
[29] Panciroli R, Falcucci G, Erme G, Santis E D, Jannelli E 2015 Aip. Conference, AIP Publishing LLC, April 1, 1648 570011
[30] 孙士丽 2011 博士学位论文 (哈尔滨: 哈尔滨工程大学)
Sun S L 2011 Ph. D. Dissertation (Harbin: Harbin Engineering University) (in Chinese)
[31] Hurd R C, Belden J, Jandron M A, Fanning D T, Bower A F, Truscott T T 2017 J. Fluid Mech. 824 912Google Scholar
-
-
[1] Kubota Y, Mochizuki O 2015 WJM 5 129Google Scholar
[2] Epps B P, Techet A H 2007 Exp. Fluids. 43 691Google Scholar
[3] Sun T, Wang H, Zou L, Zong Z, Li H 2019 Ocean. Eng. 194 106597Google Scholar
[4] Xia W, Cong W, Wei Y, Li C 2020 Appl. Ocean. Res. 103 102322Google Scholar
[5] Xia W X, Wang C, Wei Y J, Li J C, Yang L 2020 Exp. Fluids. 61 57Google Scholar
[6] Worthington A M, Cole R S 1897 Philos. Trans. R. Soc. London 189 137Google Scholar
[7] Worthington A M 1881 P. Roy. Soc. A. Math Phy. 33 347
[8] Wood R W 1909 Science 29 464Google Scholar
[9] Duclaux V, Caillé F, Duez C, Ybert C, Bocquet L, Clanet C 2007 J. Fluid Mech. 591 1Google Scholar
[10] Seddon C M, Moatamedi M 2006 Int. J. Impact. Eng. 32 1045Google Scholar
[11] May A 1952 J. Appl. Phys. 23 1362Google Scholar
[12] Yang L, Wei Y, Wang C, Xia W, Li J 2020 J. Appl. Phys. 127 064901Google Scholar
[13] Truscott T T, Epps B P, Techet A H 2012 J. Fluid Mech. 704 173Google Scholar
[14] Aristoff J M, Truscott T T, Techet A H, Bush J W M 2010 Phys. Fluids 22 70
[15] Aristoff J M, Bush J W M 2009 J. Fluid Mech. 619 45Google Scholar
[16] 何春涛, 王聪, 何乾坤, 仇洋 2012 61 134701Google Scholar
He C T, Wang C, He Q K, Qiu Y 2012 Acta Phys. Sin. 61 134701Google Scholar
[17] 施红辉, 周浩磊, 吴岩, 贾会霞, 张晓萍, 周素云, 章利特, 董若凌 2012 力学学报 44 49Google Scholar
Shi H H, Zhou H L, Wu Y, Jia H X, Zhang X P, Zhou S Y, Zhang L T, Dong R L 2012 J. Mech. Phys. Solids. 44 49Google Scholar
[18] 李佳川, 魏英杰, 王聪, 邓环宇 2016 65 204703Google Scholar
Li J C, Wei Y J, Wang C, Deng H Y 2016 Acta Phys. Sin. 65 204703Google Scholar
[19] 李佳川, 魏英杰, 王聪 2019 兵工学报 40 124Google Scholar
Li J C, Wei Y J, Wang C 2019 Acta. Armamentarii. 40 124Google Scholar
[20] 卢佳兴, 魏英杰, 王聪, 路丽睿, 许昊 2019 力学学报 51 150
Lu J X, Wei Y J, Wang C, Lu L R, Xu H 2019 J. Mech. Phys. Solids. 51 150
[21] Yun H, Lyu X, Wei Z 2020 Ocean. Eng. 201 107143Google Scholar
[22] Yun H, Lyu X, Wei Z 2020 J. Visual. Japan. 23 49Google Scholar
[23] Truscott T T, Epps B P, Belden J 2014 Annu. Rev. Fluid Mech. 46 355Google Scholar
[24] Truscott T T, Techet A H 2006 Phys. Fluids 18 4173
[25] Speirs N B, Mansoor M M, Belden J, Truscott T T 2019 J. Fluid Mech. 862 R3Google Scholar
[26] Russo S, Biscarini C, Facci A L, Falcucci G, Jannelli E 2017 J. Mar Sci Tech. Japan. 23 67
[27] Facci A L, Falcucci G, Agresta A, Biscarini C 2019 Water 11 1048Google Scholar
[28] Russo S, Falcucci G 2018 ICNAAM. Greece 1987 25
[29] Panciroli R, Falcucci G, Erme G, Santis E D, Jannelli E 2015 Aip. Conference, AIP Publishing LLC, April 1, 1648 570011
[30] 孙士丽 2011 博士学位论文 (哈尔滨: 哈尔滨工程大学)
Sun S L 2011 Ph. D. Dissertation (Harbin: Harbin Engineering University) (in Chinese)
[31] Hurd R C, Belden J, Jandron M A, Fanning D T, Bower A F, Truscott T T 2017 J. Fluid Mech. 824 912Google Scholar
Catalog
Metrics
- Abstract views: 6241
- PDF Downloads: 119
- Cited By: 0