搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

加热球体入水空泡实验研究

李佳川 魏英杰 王聪 邓环宇

引用本文:
Citation:

加热球体入水空泡实验研究

李佳川, 魏英杰, 王聪, 邓环宇

Water-entry cavity of heated spheres

Li Jia-Chuan, Wei Ying-Jie, Wang Cong, Deng Huan-Yu
PDF
导出引用
  • 基于高速摄像方法,开展了17–800℃范围内不同温度球体垂直入水实验研究.呈现了随球体温度变化所产生的复杂入水现象:在1.5 m/s入水速度条件下,实验所采用的室温球体不能产生空泡,当球体温度为300℃时空泡生成,增加到400℃空泡消失,继续提高温度至700℃空泡再次形成.根据传热学与流体动力学理论,分析了温度与速度变化对空泡形成的影响机理.结果表明随着温度的升高,球体与水之间的传热效率与传热方式发生改变,汽化生成的汽泡和蒸汽膜改变了周围流体流动的湍动性和球体表面的粗糙度、疏水性,这些变化均会影响空泡的形成;在1.5–3.8 m/s入水速度范围内,当球体具有较高温度时,能否形成入水空泡主要与球体的传热性能有关,速度的提高增强了球体与水的传热效率,使高速入水条件下的较低温度球体同低速入水条件下的较高温度球体入水现象相似,速度本身仅对生成空泡的形态有所影响.
    The present study aims to address the effect of sphere temperature on water-entry cavity. For this purpose, an experiment on vertical water-entry cavity of a heated sphere is conducted by utilizing a high-speed video camera. The temperature of the sphere ranges from 17℃ to 800℃. The complex flow phenomena of water entry, produced by a change in temperature of a sphere, is obtained for the first time. According to the finding, cavity is not formed around the room temperature sphere under the condition of the impact velocity of 1.5 m/s. When the temperature of the sphere is 300℃, the cavity appears, while it disappears when the temperature reaches up to 400℃. Interestingly, cavity appears again as the sphere is heated to a temperature of 700℃. The degrees of drag reduction of the sphere are different in various temperature conditions. Based on the theory of heat transfer and fluid dynamics, we analyze the mechanism for the influences of temperature and velocity on the forming of cavitation. The results show that the heat-transfer efficiency and heat-transfer mode between sphere and water change with the increase of temperature. Meanwhile the turbulent characteristic around the sphere, the surface roughness and hydrophobicity of the sphere are affected by the bubbles and vapor layer. In consequence, these characteristics influence the formation of cavity. The results of the effect of impact velocity on water-entry cavity reveal that the heat transfer performance plays a significant role in the forming of cavity, while the heat transfer efficiency is improved by the increase of impact velocity. The water-entry characteristics are similar to those in flow field under high temperature at low impact velocity as well as under low temperature at high impact velocity. The flow field of water entry looks similar under 330℃ at high impact velocity as well as under 400℃ at low impact velocity. Thus, an abnormal phenomenon appears. That is to say, the cavity size first decreases, and then disappears with the increase of impact velocity for the sphere at 330℃. The heat transfer performance can determine whether a cavity forms under the conditions of the impact velocity ranging from 1.5 m/s to 3.8 m/s. Meanwhile, the impact velocity itself can merely affect the cavity shape. The pitch-off time of the 300℃ sphere is irrelevant to impact velocity, which shows a good consistency with the literature result. Also, this research will be conductive to gaining an insight into the complex flow of water-entry with a heated sphere.
      通信作者: 魏英杰, weiyingjie@gmail.com
    • 基金项目: 黑龙江省自然科学基金(批准号:A201409)、哈尔滨市科技创新人才研究专项基金(批准号:2013RFLXJ007)和中央高校基本科研业务费(批准号:HIT.NSRIF.201159)资助的课题.
      Corresponding author: Wei Ying-Jie, weiyingjie@gmail.com
    • Funds: Project supported by the Natural Science Foundation of Heilongjiang Province, China (Grant No. A201409), the Special Foundation for Harbin Science and Technology Innovation Talents of China (Grant No. 2013RFLXJ007), and the Fundamental Research Fund for the Central Universities, China (Grant No. HIT.NSRIF.201159).
    [1]

    He C T, Wang C, He Q K, Qiu Y 2012 Acta Phys. Sin. 61 134701 (in Chinese)[何春涛, 王聪, 何乾坤, 仇洋2012 61 134701]

    [2]

    Lu Z L, Wei Y J, Wang C, Sun Z 2016 Acta Phys. Sin. 65 014704 (in Chinese)[路中磊, 魏英杰, 王聪, 孙钊2016 65 014704]

    [3]

    Liu D, He Q, Evans G M 2010 Adv. Powder Technol. 21 401

    [4]

    Le Goff A, Quere D, Clanet C 2013 Phys. Fluids 25 043101

    [5]

    Bell G E 1924 Philos. Mag. J. Sci. 48 753

    [6]

    Gilbarg D, Anderson R A 1948 J. Appl. Phys. 19 127

    [7]

    May A 1952 J. Appl. Phys. 23 1362

    [8]

    Ueda Y, Tanaka M, Uemura T, Iguchi M 2010 J. Visualization 13 289

    [9]

    May A 1951 J. Appl. Phys. 22 1219

    [10]

    Worthington A M, Cole R S 1897 Philos. Trans. R. Soc. London 189 137

    [11]

    Aristoff J M, Bush J W M 2009 J. Fluid Mech. 619 45

    [12]

    Duez C, Ybert C, Clanet C, Bocquet L 2007 Nat. Phys. 3 180

    [13]

    Marston J O, Vakarelski I U, Thoroddsen S T 2012 J. Fluid Mech. 699 465

    [14]

    Zvirin Y, Hewitt G F, Kenning D B R 1990 Exp. Heat Transfer 3 185

    [15]

    Gylys J, Skvorcinskiene R, Paukstaitis L, Gylys M, Adomavicius A 2015 Int. J. Heat Mass Transfer 89 913

    [16]

    Vakarelski I U, Marston J O, Chan D Y C, Thoroddsen S T 2011 Phys. Rev. Lett. 106 214501

    [17]

    Vakarelski I U, Patankar N A, Marston J O, Chan D Y C, Thoroddsen S T 2012 Nature 489 274

    [18]

    Vakarelski I U, Chan D Y C, Thoroddsen S T 2014 Soft Matter 10 5662

    [19]

    Li L X, Li H X, Chen T K 2008 Exp. Therm. Fluid Sci. 32 962

    [20]

    Marston J O, Truscott T T, Speirs N B, Mansoor M M, Thoroddsen S T 2016 J. Fluid Mech. 794 506

    [21]

    Ding H, Chen B Q, Liu H R, Zhang C Y, Gao P, Lu X Y 2015 J. Fluid Mech. 783 504

    [22]

    Elbing B R, Winkel E S, Lay K A, Ceccio S L, Dowling D R, Perlin M 2008 J. Fluid Mech. 612 201

    [23]

    Biance A L, Chevy F, Clanet C, Lagubeau G, Quere D 2006 J. Fluid Mech. 554 47

    [24]

    Duclaux V, Caille F, Duez C, Ybert C, Bocquet L, Clanet C 2007 J. Fluid Mech. 591 1

    [25]

    Ong C L, Thome J R 2011 Exp. Therm Fluid Sci. 35 873

  • [1]

    He C T, Wang C, He Q K, Qiu Y 2012 Acta Phys. Sin. 61 134701 (in Chinese)[何春涛, 王聪, 何乾坤, 仇洋2012 61 134701]

    [2]

    Lu Z L, Wei Y J, Wang C, Sun Z 2016 Acta Phys. Sin. 65 014704 (in Chinese)[路中磊, 魏英杰, 王聪, 孙钊2016 65 014704]

    [3]

    Liu D, He Q, Evans G M 2010 Adv. Powder Technol. 21 401

    [4]

    Le Goff A, Quere D, Clanet C 2013 Phys. Fluids 25 043101

    [5]

    Bell G E 1924 Philos. Mag. J. Sci. 48 753

    [6]

    Gilbarg D, Anderson R A 1948 J. Appl. Phys. 19 127

    [7]

    May A 1952 J. Appl. Phys. 23 1362

    [8]

    Ueda Y, Tanaka M, Uemura T, Iguchi M 2010 J. Visualization 13 289

    [9]

    May A 1951 J. Appl. Phys. 22 1219

    [10]

    Worthington A M, Cole R S 1897 Philos. Trans. R. Soc. London 189 137

    [11]

    Aristoff J M, Bush J W M 2009 J. Fluid Mech. 619 45

    [12]

    Duez C, Ybert C, Clanet C, Bocquet L 2007 Nat. Phys. 3 180

    [13]

    Marston J O, Vakarelski I U, Thoroddsen S T 2012 J. Fluid Mech. 699 465

    [14]

    Zvirin Y, Hewitt G F, Kenning D B R 1990 Exp. Heat Transfer 3 185

    [15]

    Gylys J, Skvorcinskiene R, Paukstaitis L, Gylys M, Adomavicius A 2015 Int. J. Heat Mass Transfer 89 913

    [16]

    Vakarelski I U, Marston J O, Chan D Y C, Thoroddsen S T 2011 Phys. Rev. Lett. 106 214501

    [17]

    Vakarelski I U, Patankar N A, Marston J O, Chan D Y C, Thoroddsen S T 2012 Nature 489 274

    [18]

    Vakarelski I U, Chan D Y C, Thoroddsen S T 2014 Soft Matter 10 5662

    [19]

    Li L X, Li H X, Chen T K 2008 Exp. Therm. Fluid Sci. 32 962

    [20]

    Marston J O, Truscott T T, Speirs N B, Mansoor M M, Thoroddsen S T 2016 J. Fluid Mech. 794 506

    [21]

    Ding H, Chen B Q, Liu H R, Zhang C Y, Gao P, Lu X Y 2015 J. Fluid Mech. 783 504

    [22]

    Elbing B R, Winkel E S, Lay K A, Ceccio S L, Dowling D R, Perlin M 2008 J. Fluid Mech. 612 201

    [23]

    Biance A L, Chevy F, Clanet C, Lagubeau G, Quere D 2006 J. Fluid Mech. 554 47

    [24]

    Duclaux V, Caille F, Duez C, Ybert C, Bocquet L, Clanet C 2007 J. Fluid Mech. 591 1

    [25]

    Ong C L, Thome J R 2011 Exp. Therm Fluid Sci. 35 873

  • [1] 胡剑, 张森, 娄钦. 电场和加热器特性对饱和池沸腾传热影响的介观数值方法研究.  , 2023, 72(17): 176401. doi: 10.7498/aps.72.20230341
    [2] 曹春蕾, 何孝天, 马骁婧, 徐进良. 液态金属软表面池沸腾传热的实验研究.  , 2021, 70(13): 134703. doi: 10.7498/aps.70.20202053
    [3] 杨柳, 孙铁志, 魏英杰, 王聪, 李佳川, 夏维学. 超弹性球体入水过程空泡演化及球体变形实验.  , 2021, 70(8): 084701. doi: 10.7498/aps.70.20201738
    [4] 许昊, 王聪, 陆宏志, 黄文虎. 水下超声速气体射流诱导尾空泡实验研究.  , 2018, 67(1): 014703. doi: 10.7498/aps.67.20171617
    [5] 宋武超, 魏英杰, 路丽睿, 王聪, 卢佳兴. 基于势流理论的回转体并联入水双空泡演化动力学研究.  , 2018, 67(22): 224702. doi: 10.7498/aps.67.20181375
    [6] 何宗旭, 严微微, 张凯, 杨向龙, 魏义坤. 底部局部加热多孔介质自然对流传热的格子Boltzmann模拟.  , 2017, 66(20): 204402. doi: 10.7498/aps.66.204402
    [7] 路中磊, 魏英杰, 王聪, 曹伟. 开放空腔壳体入水扰动流场结构及空泡失稳特征.  , 2017, 66(6): 064702. doi: 10.7498/aps.66.064702
    [8] 路中磊, 魏英杰, 王聪, 孙钊. 基于高速摄像实验的开放腔体圆柱壳入水空泡流动研究.  , 2016, 65(1): 014704. doi: 10.7498/aps.65.014704
    [9] 王小虎, 易仕和, 付佳, 陆小革, 何霖. 二维高超声速后台阶表面传热特性实验研究.  , 2015, 64(5): 054706. doi: 10.7498/aps.64.054706
    [10] 沈胜强, 张洁珊, 梁刚涛. 液滴撞击加热壁面传热实验研究.  , 2015, 64(13): 134704. doi: 10.7498/aps.64.134704
    [11] 何春涛, 王聪, 何乾坤, 仇洋. 圆柱体低速入水空泡试验研究.  , 2012, 61(13): 134701. doi: 10.7498/aps.61.134701
    [12] 马维刚, 王海东, 张兴, 王玮. 飞秒脉冲激光加热金属薄膜的理论和实验研究.  , 2011, 60(6): 064401. doi: 10.7498/aps.60.064401
    [13] 魏岗, 吴宁, 徐小辉, 苏晓冰, 尤云祥. 线性密度分层流体中半球体运动生成内波的实验研究.  , 2011, 60(4): 044704. doi: 10.7498/aps.60.044704
    [14] 刘秀梅, 贺杰, 陆建, 倪晓武. 表面张力对固壁旁空泡运动特性影响的理论和实验研究.  , 2009, 58(6): 4020-4025. doi: 10.7498/aps.58.4020
    [15] 王雨虹, 王江安, 任席闯. 激光空泡特性实验与数值计算研究.  , 2009, 58(12): 8372-8378. doi: 10.7498/aps.58.8372
    [16] 张继彦, 杨家敏, 许 琰, 杨国洪, 颜 君, 孟广为, 丁耀南, 汪 艳. 辐射加热Al等离子体的吸收谱实验.  , 2008, 57(2): 985-989. doi: 10.7498/aps.57.985
    [17] 赵 瑞, 徐荣青, 沈中华, 陆 建, 倪晓武. 黏性液体中激光空泡脉动特性的理论和实验研究.  , 2006, 55(9): 4783-4788. doi: 10.7498/aps.55.4783
    [18] 贺西平, 李 斌. 弯张换能器装配预应力及入水后的变化.  , 2004, 53(2): 498-502. doi: 10.7498/aps.53.498
    [19] 何绍堂, 张覃鑫, 杨向东, 丁耀南, 成金秀. 激光加热充氖靶丸的压缩实验研究.  , 1990, 39(5): 693-698. doi: 10.7498/aps.39.693
    [20] 关维恕, 王恩耀, 程仕清, 段淑云, 王纪海, 顾彪, 尚振奎. 电子迥旋加热等离子体及热电子环特性的实验研究.  , 1989, 38(2): 228-235. doi: 10.7498/aps.38.228
计量
  • 文章访问数:  6100
  • PDF下载量:  170
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-04-11
  • 修回日期:  2016-07-21
  • 刊出日期:  2016-10-05

/

返回文章
返回
Baidu
map