搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于高速摄像实验的开放腔体圆柱壳入水空泡流动研究

路中磊 魏英杰 王聪 孙钊

引用本文:
Citation:

基于高速摄像实验的开放腔体圆柱壳入水空泡流动研究

路中磊, 魏英杰, 王聪, 孙钊

An experimental study of water-entry cavitating flows of an end-closed cylindrical shell based on the high-speed imaging technology

Lu Zhong-Lei, Wei Ying-Jie, Wang Cong, Sun Zhao
PDF
导出引用
  • 基于高速摄像方法, 针对入水空泡流动特征和机理, 进行了开放腔体圆柱壳垂直入水实验研究. 通过对实验现象的观测, 发现开放腔体圆柱壳入水运动会形成波动流动和云化流动两种流动方式, 结合影像数据, 分别描述了两种流动状态下的空泡形态特征, 并获得了空泡波动参数的变化规律; 对比不同入水速度实验, 分析了入水速度对入水空泡流动方式和流动参数的影响; 依据流体力学基本理论, 分析了入水空泡波动和云化现象的形成机理. 结果表明: 随入水速度增加, 入水空泡依次呈现波动和云化两种流动状态, 波动频率与入水速度无关, 闭合发生时间随入水速度增加而减小, 与Froude数呈线性关系; 入水导致开放空腔内部气体涨缩, 引起开放端压力场和速度场周期性扰动, 空泡截面扩展程度出现差异, 形成空泡波动现象; 空泡闭合后尾部形成回射流, 回射流触及空泡壁面引起壁面流动转捩, 形成空泡云化现象.
    The objective of this present study is to address the cavitating flow patterns and regimes in the water-entry cavity. For this purpose, an experimental study of vertical water-entry cavity of an end-closed cylindrical shell is investigated by using high-speed video cameras and visualization technique. According to the cavitating flows as observed in the experiments, two flow pattern forms of fluctuation cavitation and cloud cavitation are found around the body. A further insight into the characteristics of the cavity shape and the variation in the cavity fluctuations parameters is gained by analyzing the image data. Furthermore, the experiments at different impact velocities are conducted to analyze the effects of impact velocity on the flow patterns and parameters. Finally, the formation mechanisms of cavitation fluctuations and cavitation clouds are studied based on the basic theory of fluid mechanics. The obtained results show that the cavitation flow pattern form of fluctuation cavitation occurs under the impact velocity condition of low speed, and the cloud cavitation occurs under the velocity condition of high speed. As fluctuation cavitation, the maximal extension diameters of cavitation fluctuate periodically along the water depth, and the speeds of extension and shrinkage are both proportional to the extension diameter. The collapses are different for the two flow pattern cavitations, i.e., the fluctuation cavitation, which is of deep closure and closed at the trough of wave cavitation more than once, and the cloud cavitation, which falls off and forms the leading edge of the cylindrical shell. The frequency fluctuation is independent of the impact velocity, the corresponding pinch-off time decreases with increasing the impact velocity, and the pinch-off time decreases in a nearly linear relation with Froude number. The water poured to the cylindrical shell causes the internal air to compress and expand, and as a consequence of these effects, periodic disturbances of pressure distribution and velocity field occur around the leading edge of the cylindrical shell, then the extended intensity of the cross section of the cavity shows variation in this process, which can be defined as fluctuation cavitation pattern. It appears that the re-entrant flow after the pinch-off at the trailing edge of cavity, then the laminar-turbulent transition is waken as a consequence of the re-entrant flow moving upstream, which flow pattern involved in this structure occurs as cloud cavitation.
      通信作者: 魏英杰, weiyingjie@gmail.com
    • 基金项目: 黑龙江省自然科学基金(批准号: A201409)、哈尔滨市科技创新人才研究专项基金(批准号: 2013RFLXJ007)和中央高校基本科研业务费专项资金(批准号: HIT.NSRIF.201159)资助的课题.
      Corresponding author: Wei Ying-Jie, weiyingjie@gmail.com
    • Funds: Project supported by the Natural Science Foundation of Heilongjiang Province, China (Grant No. A201409), the Special Foundation for Harbin Science and Technology Innovation Talents of China (Grant No. 2013RFLXJ007), and the Fundamental Research Funds for the Central Universities, China (Grant No. HIT. NSRIF. 201159).
    [1]

    Worthington A M, Cole R S 1897 Phil. Trans. Roy. Soc. A 189 137

    [2]

    Worthington A M, Cole R S 1900 Phil. Trans. Roy. Soc. A 194 175

    [3]

    Worthington A M, Cole R S 1909 A Study of Splashes (London, New York, Bombay, Calcutta: Longmans, Green, and Co.) p78

    [4]

    Maccoll J W 1928 J. Roy. Aeronaut. Soc. 32 777

    [5]

    May A, Woodhull J C 1948 J. Appl. Phys. 19 1109

    [6]

    He C T, Wang C, He Q K, Qiu Y 2012 Acta Phys. Sin. 61 134701 (in Chinese) [何春涛, 王聪, 何乾坤, 仇洋 2012 61 134701]

    [7]

    May A 1951 J. Appl. Phys. 22 1219

    [8]

    Liu X M, He J, Lu J, Ni X W 2009 Acta Phys. Sin. 58 4020 (in Chinese) [刘秀梅, 贺杰, 陆建, 倪晓武 2009 58 4020]

    [9]

    Zhao R, Xu R Q, Liang Z C, Lu J, Ni X W 2009 Acta Phys. Sin. 58 8400 (in Chinese) [赵瑞, 徐荣青, 梁忠诚, 陆建, 倪晓武 2009 58 8400]

    [10]

    Logvinovich G V (translated by Lederman) 1972 Hydrodynamics of Free-boundary Flows (Jersualem: IPST Press) pp104-118

    [11]

    Richardson E G 1948 Proc. Phys. Soc. 61 352

    [12]

    Truscott T T 2009 Ph. D. Dissertation (Cambridge: Massachusetts Institute of Technology)

    [13]

    Truscott T T, Techet A H 2009 Phys. Fluids. 21 121703

    [14]

    Truscott T T, Techet A H 2009 J. Fluid Mech. 625 135

    [15]

    Weninger K R, Cho H, Hiller R A, Putterman S J, Williams A 1997 Phys. Rev. E 56 6745

    [16]

    Huang J T 1989 J. Tsinghua Univ. 29 1 (in Chinese) [黄继汤 1989 清华大学学报 29 1]

    [17]

    Heath M, Sarkar S, Sanocki T 1996 1996 IEEE Computer Society Conference on. Computer Vision and Pattern Recogniton San Francisco, USA, June 18-20,1996 p143

    [18]

    Grumstrup T, Keller J B, Belmonte A 2007 Phys. Rev. Lett. 99 114502

    [19]

    Bergmann R, van der Meer D, Stijnman M, Sandtke M, Prosperetti A, Lohse D 2006 Phys. Rev. Lett. 96 154505

    [20]

    Waugh G 1975 Naval Undersea Center California: AD-A007 529

  • [1]

    Worthington A M, Cole R S 1897 Phil. Trans. Roy. Soc. A 189 137

    [2]

    Worthington A M, Cole R S 1900 Phil. Trans. Roy. Soc. A 194 175

    [3]

    Worthington A M, Cole R S 1909 A Study of Splashes (London, New York, Bombay, Calcutta: Longmans, Green, and Co.) p78

    [4]

    Maccoll J W 1928 J. Roy. Aeronaut. Soc. 32 777

    [5]

    May A, Woodhull J C 1948 J. Appl. Phys. 19 1109

    [6]

    He C T, Wang C, He Q K, Qiu Y 2012 Acta Phys. Sin. 61 134701 (in Chinese) [何春涛, 王聪, 何乾坤, 仇洋 2012 61 134701]

    [7]

    May A 1951 J. Appl. Phys. 22 1219

    [8]

    Liu X M, He J, Lu J, Ni X W 2009 Acta Phys. Sin. 58 4020 (in Chinese) [刘秀梅, 贺杰, 陆建, 倪晓武 2009 58 4020]

    [9]

    Zhao R, Xu R Q, Liang Z C, Lu J, Ni X W 2009 Acta Phys. Sin. 58 8400 (in Chinese) [赵瑞, 徐荣青, 梁忠诚, 陆建, 倪晓武 2009 58 8400]

    [10]

    Logvinovich G V (translated by Lederman) 1972 Hydrodynamics of Free-boundary Flows (Jersualem: IPST Press) pp104-118

    [11]

    Richardson E G 1948 Proc. Phys. Soc. 61 352

    [12]

    Truscott T T 2009 Ph. D. Dissertation (Cambridge: Massachusetts Institute of Technology)

    [13]

    Truscott T T, Techet A H 2009 Phys. Fluids. 21 121703

    [14]

    Truscott T T, Techet A H 2009 J. Fluid Mech. 625 135

    [15]

    Weninger K R, Cho H, Hiller R A, Putterman S J, Williams A 1997 Phys. Rev. E 56 6745

    [16]

    Huang J T 1989 J. Tsinghua Univ. 29 1 (in Chinese) [黄继汤 1989 清华大学学报 29 1]

    [17]

    Heath M, Sarkar S, Sanocki T 1996 1996 IEEE Computer Society Conference on. Computer Vision and Pattern Recogniton San Francisco, USA, June 18-20,1996 p143

    [18]

    Grumstrup T, Keller J B, Belmonte A 2007 Phys. Rev. Lett. 99 114502

    [19]

    Bergmann R, van der Meer D, Stijnman M, Sandtke M, Prosperetti A, Lohse D 2006 Phys. Rev. Lett. 96 154505

    [20]

    Waugh G 1975 Naval Undersea Center California: AD-A007 529

  • [1] 杨柳, 孙铁志, 魏英杰, 王聪, 李佳川, 夏维学. 超弹性球体入水过程空泡演化及球体变形实验.  , 2021, 70(8): 084701. doi: 10.7498/aps.70.20201738
    [2] 许昊, 王聪, 陆宏志, 黄文虎. 水下超声速气体射流诱导尾空泡实验研究.  , 2018, 67(1): 014703. doi: 10.7498/aps.67.20171617
    [3] 宋武超, 魏英杰, 路丽睿, 王聪, 卢佳兴. 基于势流理论的回转体并联入水双空泡演化动力学研究.  , 2018, 67(22): 224702. doi: 10.7498/aps.67.20181375
    [4] 魏梦举, 陈力, 伍涛, 张鸿雁, 崔海航. 微尺度空泡溃灭驱使微球运动的机理研究.  , 2017, 66(16): 164702. doi: 10.7498/aps.66.164702
    [5] 路中磊, 魏英杰, 王聪, 曹伟. 开放空腔壳体入水扰动流场结构及空泡失稳特征.  , 2017, 66(6): 064702. doi: 10.7498/aps.66.064702
    [6] 李佳川, 魏英杰, 王聪, 邓环宇. 加热球体入水空泡实验研究.  , 2016, 65(20): 204703. doi: 10.7498/aps.65.204703
    [7] 邱超, 张会臣. 正则系综条件下空化空泡形成的分子动力学模拟.  , 2015, 64(3): 033401. doi: 10.7498/aps.64.033401
    [8] 王宝, 汪家道, 陈大融. 基于微空泡效应的疏水性展向微沟槽表面水下减阻研究.  , 2014, 63(7): 074702. doi: 10.7498/aps.63.074702
    [9] 李小磊, 秦长剑, 张会臣. 激光空泡在文丘里管中运动的动力学特性.  , 2014, 63(5): 054707. doi: 10.7498/aps.63.054707
    [10] 姚熊亮, 叶曦, 张阿漫. 行波驱动下空泡在可压缩流场中的运动特性研究.  , 2013, 62(24): 244701. doi: 10.7498/aps.62.244701
    [11] 叶曦, 姚熊亮, 张阿漫, 庞福振. 可压缩涡流场中空泡运动规律及声辐射特性研究.  , 2013, 62(11): 114702. doi: 10.7498/aps.62.114702
    [12] 李贝贝, 张宏超, 韩冰, 陈军, 倪晓武, 陆建. 圆锥边界附近激光空泡溃灭行为的研究.  , 2012, 61(17): 174210. doi: 10.7498/aps.61.174210
    [13] 何春涛, 王聪, 何乾坤, 仇洋. 圆柱体低速入水空泡试验研究.  , 2012, 61(13): 134701. doi: 10.7498/aps.61.134701
    [14] 龚博致, 张秉坚. 水中自然超空泡机理及减阻效应的非平衡分子动力学研究.  , 2009, 58(3): 1504-1509. doi: 10.7498/aps.58.1504
    [15] 赵瑞, 徐荣青, 梁忠诚, 陆建, 倪晓武. 含气量对黏性液体中空泡脉动特性的影响.  , 2009, 58(12): 8400-8405. doi: 10.7498/aps.58.8400
    [16] 刘秀梅, 贺杰, 陆建, 倪晓武. 表面张力对固壁旁空泡运动特性影响的理论和实验研究.  , 2009, 58(6): 4020-4025. doi: 10.7498/aps.58.4020
    [17] 王雨虹, 王江安, 任席闯. 激光空泡特性实验与数值计算研究.  , 2009, 58(12): 8372-8378. doi: 10.7498/aps.58.8372
    [18] 赵 瑞, 徐荣青, 沈中华, 陆 建, 倪晓武. 黏性液体中激光空泡脉动特性的理论和实验研究.  , 2006, 55(9): 4783-4788. doi: 10.7498/aps.55.4783
    [19] 徐荣青, 陈笑, 沈中华, 陆建, 倪晓武. 固体壁面附近激光空泡的动力学特性研究.  , 2004, 53(5): 1413-1418. doi: 10.7498/aps.53.1413
    [20] 刘 辽. 时空泡沫结构与量子电动力学中发散的消除.  , 1998, 47(3): 363-367. doi: 10.7498/aps.47.363
计量
  • 文章访问数:  7358
  • PDF下载量:  334
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-07-07
  • 修回日期:  2015-08-21
  • 刊出日期:  2016-01-05

/

返回文章
返回
Baidu
map