[1] |
Chen Feng, Ren Gang. Analysis of quantum properties of two-mode coupled harmonic oscillator based on entangled state representation. Acta Physica Sinica,
2024, 73(23): 230302.
doi: 10.7498/aps.73.20241303
|
[2] |
Guo Rui-Ping, Yu Hong-Yi. Position- and momentum-dependent interlayer couplings in two-dimensional semiconductor moiré superlattices. Acta Physica Sinica,
2023, 72(2): 027302.
doi: 10.7498/aps.72.20222046
|
[3] |
Jiang Lei, Lai Li, Yu Tao, Luo Mao-Kang. Collective behaviors of globally coupled harmonic oscillators driven by different frequency fluctuations. Acta Physica Sinica,
2021, 70(13): 130501.
doi: 10.7498/aps.70.20210157
|
[4] |
Gou Li-Dan. On noncommutative energy spectra in two-dimensional coupling harmonic oscillator. Acta Physica Sinica,
2021, 70(20): 200301.
doi: 10.7498/aps.70.20210092
|
[5] |
Li Zhi-Qiang, Wang Yue-Ming. One-dimensional spin-orbit coupling Bose gases with harmonic trapping. Acta Physica Sinica,
2019, 68(17): 173201.
doi: 10.7498/aps.68.20190143
|
[6] |
Liang Hao, Li Jian-Sheng, Guo Yun-Sheng. Theoretical and experimental study of the electric resonant coupling between two metamaterial resonators. Acta Physica Sinica,
2015, 64(14): 144101.
doi: 10.7498/aps.64.144101
|
[7] |
Xia Jian-Ping, Ren Xue-Zao, Cong Hong-Lu, Wang Xu-Wen, He Shu. Quantum evolution of entanglement property in two-qubit and oscillator coupling system. Acta Physica Sinica,
2012, 61(1): 014208.
doi: 10.7498/aps.61.014208
|
[8] |
Lou Zhi-Mei, Mei Feng-Xiang, Chen Zi-Dong. The first-order approximate Lie symmetries and approximate conserved quantities of the weak nonlinear coupled two-dimensional anisotropic harmonic oscillator. Acta Physica Sinica,
2012, 61(11): 110204.
doi: 10.7498/aps.61.110204
|
[9] |
Jin Ming-Jie, Tan Lei. An algebraic approach to the generalization of n-dimensional coupled harmonic oscillators system. Acta Physica Sinica,
2012, 61(14): 140301.
doi: 10.7498/aps.61.140301
|
[10] |
Ling Rui-Liang, Feng Jin-Fu, Hu Yun. Exact wave function of dual-coupled two-dimensional harmonic oscillators with time-dependent and anisotropic mass and frequency. Acta Physica Sinica,
2010, 59(2): 759-764.
doi: 10.7498/aps.59.759
|
[11] |
Ling Rui-Liang, Feng Jin, Feng Jin-Fu. Quantized energy spectrum and exact wave function of three-dimensional anisotropic coupled harmonic oscillator. Acta Physica Sinica,
2010, 59(12): 8348-8358.
doi: 10.7498/aps.59.8348
|
[12] |
Wang Nan, Zhang Yun-Dong, Wang Jin-Fang, Tian He, Wang Hao, Zhang Xue-Nan, Zhang Jing, Yuan Ping. Research on CRIT property in ring-in-ring structure resonator. Acta Physica Sinica,
2009, 58(11): 7672-7679.
doi: 10.7498/aps.58.7672
|
[13] |
Tian He, Zhang Yun-Dong, Wang Hao, Qiu Wei, Wang Nan, Yuan Ping. Control of dispersion in microring coupled-resonator optical waveguides. Acta Physica Sinica,
2008, 57(10): 6400-6403.
doi: 10.7498/aps.57.6400
|
[14] |
Xu Xiu-Wei, Ren Ting-Qi, Liu Shu-Yan, Dong Yong-Mian, Zhao Ji-De. General solution for multi-dimensional coupled and forced quantum oscillator. Acta Physica Sinica,
2006, 55(2): 535-538.
doi: 10.7498/aps.55.535
|
[15] |
Lou Zhi-Mei. Lagrangian function and conserved quantity of onedimensional relativistic harmonic oscillator containing a quadratic velocity drag force term. Acta Physica Sinica,
2005, 54(4): 1457-1459.
doi: 10.7498/aps.54.1457
|
[16] |
Li Jiang-Fan, Huang Chun-Jia, Jiang Zong-Fu, Huang Zu-Hong. The evolution and two-mode squeezed states of the time-dependent two coupled harmonic oscillators. Acta Physica Sinica,
2005, 54(2): 522-529.
doi: 10.7498/aps.54.522
|
[17] |
Fu Mei-Huan, Ren Zhong-Zhou. Four kinds of raising and lowering operators of three-dimensional isotropic harmonic oscillators with spin-orbit coupling. Acta Physica Sinica,
2004, 53(5): 1280-1283.
doi: 10.7498/aps.53.1280
|
[18] |
Xie Yuan-Xi, Tang Jia-Shi. A simple fast method in finding the analytical solutions to a class of nonlinear partial differential equations. Acta Physica Sinica,
2004, 53(9): 2828-2830.
doi: 10.7498/aps.53.2828
|
[19] |
LING RUI-LIANG. PROPAGATOR AND EXACT WAVE FUNCTION OF THE TIME DEPENDENTLY DAMPED HARMONIC OSCILLATOR. Acta Physica Sinica,
2001, 50(8): 1421-1424.
doi: 10.7498/aps.50.1421
|
[20] |
LING RUI-LIANG, FENG JIN-FU. AN EXACT WAVEFUNCTION OF DAMPED HARMONIC OSCILLATOR. Acta Physica Sinica,
1998, 47(12): 1952-1956.
doi: 10.7498/aps.47.1952
|