搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

中等质量核形状共存与壳效应的研究

刘冬 郭建友

引用本文:
Citation:

中等质量核形状共存与壳效应的研究

刘冬, 郭建友

shape coexistence and shell effect of medium mass nuclei

LIU Dong, GUO Jianyou
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 对原子核形状共存和壳效应的研究有助于人们深入理解原子核内部结构。物理学家们在Zn,Ge,Se,Kr的同位素研究中,发现了显著的形状共存现象与刚性三轴性特征。为了深入探究形状共存现象及其对原子核基态性质的影响,我们采用相对论Hartree-Bogoliubov理论中密度依赖的介子交换模型,对N = 32-42的偶偶核Zn,Ge,Se,Kr同位素的基态性质进行了系统研究,获得的势能面清晰地展现了这些同位素存在形状共存和三轴性特征。计算获得了原子核的基态能量、形变参数、双中子分离能、中子半径、质子半径和电荷半径,结果都支持N = 40为新幻数,部分结果也支持N = 32、34为新幻数。尤其,三轴形变在其中扮演着重要角色。进一步,我们探讨了壳效应与形状共存现象之间可能存在的关联及其对原子核基态性质的影响,并分析了这些变化的物理机制。
    The atomic nucleus is an extremely complex quantum many-body system composed of nucleons, and its shape is determined by the number of nucleons and their interactions. The study of atomic nuclear shapes is one of the most fascinating topics in nuclear physics, providing rich insights into the microscopic details of nuclear structure. Physicists have observed significant shape coexistence phenomena and stable triaxial deformation in isotopes of Zn, Ge, Se, and Kr. This paper aims to delve deeper into the impact of shape coexistence and triaxiality on the ground-state properties of atomic nuclei, as well as to verify new magic numbers.
    We employed the density-dependent meson-exchange model within the framework of the Relativistic Hartree-Bogoliubov (RHB) theory to systematically study the ground-state properties of even-even Zn, Ge, Se, and Kr isotopes with neutron numbers N=32-42. The calculated potential energy surfaces clearly demonstrate the presence of shape coexistence and triaxial characteristics in these isotopes. By analyzing the ground-state energy, deformation parameters, two-neutron separation energies, neutron radii, proton radii, and charge radii of the atomic nuclei, we discuss the closure of nuclear shells. Our results reveal that at N=32, there is a notable abrupt change in the two-neutron separation energies of 62Zn and 64Ge. At N=34, a significant decrease in the two-neutron separation energies of 68Se and 70Kr is observed, accompanied by an abrupt change in their charge radii. Meanwhile, at N=40, clear signs of shell closure are observed. the maximum specific binding energy may correlate with the emergence of spherical nuclear structures. The shell closure not only enhances nucleon binding energy but also suppresses nuclear deformation through symmetry constraints. Our findings support N=40 as a new magic number, and some results also suggest that N=32 and N=34 could be new magic numbers. Notably, triaxial deformation plays a crucial role here. Furthermore, we explore the potential correlation between triaxiality and shape coexistence on the ground-state properties of atomic nuclei and analyze the physical mechanisms underlying these changes.
    The discrepancies between current theoretical predictions and experimental data reflect limitations in modeling higher-order many-body correlations (e.g., three-nucleon forces) and highlight challenges in experimental measurements for extreme nuclear regions (including neutron-rich and near-proton-drip-line regions). Future studies could combine tensor force corrections, large-scale shell model calculations, and high-precision data from next-generation radioactive beam facilities (e.g., FRIB, HIAF) to clarify the interplay among nuclear force parameterization, proton-neutron balance, and emergent symmetries, thereby providing a more comprehensive theoretical framework for nuclear structure under extreme conditions.
  • [1]

    Singh P, Korten W, Hagen T W, Gorgen A, Grente L, Salsac M D, Farget F, Clément E, de France G, Braunroth T, Bruyneel B, Celikovic I, Delaune O, Dewald A, Dijon A 2018 Phys. Rev. Lett. 121 192501

    [2]

    Abusara H, Ahmad S 2017 Phys. Rev. C 96 064303

    [3]

    Cejnar P, Jolie J, Casten R F 2010 Rev. Mod. Phys. 82 2155

    [4]

    Norman E B, Drobizhev A, Gharibyan N, Gregorich K E, Kolomensky Yu G, Sammis B N, Scielzo N D, Shusterman J A, Thomas K J 2024 Phys. Rev. C 109 055501

    [5]

    Majola S N T, Shi Z, Song B Y, Li Z P, Zhang S Q, Bark R A, Sharpey-Schafer J F, Aschman D G, Bvumbi S P, Bucher T D, Cullen D M, Dinoko T S, Easton J E, Erasmus N, Greenlees P T 2019 Phys. Rev. C 100 044324

    [6]

    Yang Y L, Zhao P W, Li Z P 2023 Phys. Rev. C 107 024308

    [7]

    Hua H, Wu C Y, Cline D, Hayes A B, Teng R, Clark R M, Fallon P, Goergen A, Macchiavelli A O, Vetter K 2004 Phys. Rev. C 69 014317

    [8]

    Cwiok S, Heenen P H, Nazarewicz W 2005 Nature 433 705

    [9]

    Ayangeakaa A D, Janssens R V F, Wu C Y, Allmond J M, Wood J L, Zhu S, Albers M, Almaraz-Calderon S, Bucher B, Carpenter M P, Chiara C J, Cline D, Crawford H L, Harker J, Hayes A B, Hoffman C R, Kay B P, Kolos K, Korichi A 2016 Phys. Lett. B 754 254

    [10]

    Sheng Z Q, Guo J Y 2008 Acta Phys. Sin. 57 1557 (in Chinese) [圣宗强,郭建友 2008 物理学 57 1557]

    [11]

    Jiao P, Guo J Y, Fang X Z 2010 Acta Phys. Sin. 59 2369 (in Chinese) [焦朋,郭建友,方向正 2010 59 2369]

    [12]

    Wang G, Fang X Z, Guo J Y 2012 Acta Phys. Sin. 61 102101 (in Chinese) [王刚,方向正,郭建友 2012 61 102101]

    [13]

    Nomura K, Rodriguez-Guzman R, Robledo L M 2016 Phys. Rev. C 94 044314

    [14]

    Karim A, Siddiqui T A, Ahmad S 2022 Phys. At. Nucl. 85 588

    [15]

    Zhang X Y, Niu Z M, Sun W, Xia X W 2023 Phys. Rev. C 108 024310

    [16]

    Garcia-Ramos J E, Arias J M, Dukelsky J 2014 Phys. Lett. B 736 333

    [17]

    Tong H, Zhang C, Shi Z Y, Wang H, Ni S Y 2010 Acta Phys. Sin. 59 3136 [童红,张春梅,石筑一,汪红,倪绍勇 2010 59 3136 ]

    [18]

    Bonatsos D, Assimakis I E, Minkov N, Martinou A 2017 Phys. Rev. C 95 064326

    [19]

    Zhi Q J 2011 Acta Phys. Sin. 60 052101 (in Chinese) [支启军 2011 60 052101]

    [20]

    Wu X H, Ren Z X, Zhao P W 2022 Phys. Rev. C 105 L031303

    [21]

    Gupta S, Bakshi R, Gupta S, Singh S, Bharti A, Bhat G H, Sheikh J A 2023 Eur. Phys. J. A 59 258

    [22]

    Lu X T, Jiang D X, Ye Y L 2000 Nuclear Physics (Beijing: Atomic Energy Press) pp. 192 (in Chinese)[卢希庭,江栋兴,叶沿林 2000 原子核物理(北京:原子能出版社) 第192页]

    [23]

    Wienholtz F, Beck D, Blaum K, Borgmann C, Breitenfeldt M, Cakirli R B, George S, Herfurth F, Holt J D, Kowalska M, Kreim S, Lunney D, Manea V, Menendez J, Neidherr D, Rosenbusch M, Schweikhard L, Schwenk A, Simonis J, Stanja J, Wolf R N, Zuber K 2013 Nature 498 346

    [24]

    Steppenbeck D, Takeuchi S, Aoi N, Doornenbal P, Matsushita M, Wang H, Baba H, Fukuda N, Go S, Honma M, Lee J, Matsui K, Michimasa S, Motobayashi T, Nishimura D, Otsuka T, Sakurai H, Shiga Y, Soderstrom P A, Sumikama T, Suzuki H, Taniuchi R, Utsuno Y, Valiente-Dobon J J, Yoneda K 2013 Nature 502 207

    [25]

    Michimasa S, Kobayashi M, Kiyokawa Y, Ota S, Ahn D S, Baba H, Berg G P A, Dozono M, Fukuda N, Furuno T, Ideguchi E, Inabe N, Kawabata T, Kawase S, Kisamori K, Kobayashi K, Kubo T, Kubota Y, Lee C S, Matsushita M, Miya H, Mizukami A, Nagakura H, Nishimura D, Oikawa H, Sakai H, Shimizu Y, Stolz A, Suzuki H, Takaki M, Takeda H, Takeuchi S, Tokieda H, Uesaka T, Yako K, Yamaguchi Y, Yanagisawa Y, Yokoyama R, Yoshida K, Shimoura S 2018 Phys. Rev. Lett. 121 022506

    [26]

    Liu J, Niu Y F, Long W H 2020 Phys. Lett. B 806 135524

    [27]

    Zhang W, Huang J K, Sun T T, Peng J, Zhang S Q 2024 Chin. Phys. C 48 104105

    [28]

    Ring P 1996 Prog. Part. Nucl. Phys. 37 193

    [29]

    Vretenar D, Afanasjev A V, Lalazissis G A, Ring P 2005 Phys. Rep. 409 101

    [30]

    Meng J, Toki H, Zhou S G, Zhang S Q, Long W H, Geng L S 2006 Prog. Part. Nucl. Phys. 57 470

    [31]

    Liang H Z, Meng J, Zhou S G 2015 Phys. Rep. 570 1

    [32]

    Niksic T, Paar N, Vretenar D, Ring P 2014 Comput. Phys. Commun. 185 1808

    [33]

    Ring P, Schuck P 1981 Phys. Today 36 70

    [34]

    Staszack A, Stoitsov M, Baran A, Nazarewicz W 2010 Eur. Phys. J. A 46 85

    [35]

    Tian Y, Ma Z Y, Ring P 2009 Phys. Lett. B 676 44

    [36]

    Niksic T, Ring P, Vretenar D, Tian Y, Ma Z Y 2010 Phys. Rev. C 81 054318

    [37]

    Shen S F, Wang H L, Meng H Y, Yan Y P, Shen J J, Wang F P, Jiang H B, Bao L N 2021 Acta Phys. Sin. 70 192101 (in Chinese) [沈水法,王华磊,孟海燕,阎玉鹏,沈洁洁,王飞鹏,蒋海滨,包莉娜 2021 70 192101]

    [38]

    Meng J, Huang W J, Kondev F G, Audi G, Naimi S 2021 Chin. Phys. C 45 030003

    [39]

    Wang S J, Kanellakopoulos A, Yang X F, Bai S W, Billowes J, Bissell M L, Blaum K, Cheal B, Devlin C S, Garcia Ruiz R F, Han J Z, Heylen H, Kaufmann S, König K, Koszorús Á, Lechner S, Malbrunot-Ettenauer S, Nazarewicz W, Neugart R, Neyens G, Nörtershäuser W, Ratajczyk T, Reinhard P G, Rodríguez L V, Sels S, Xie L, Xu Z Y, Yordanov D T, Yu Y M 2024 Phys. Lett. B 856 138867

    [40]

    El Adri M, Oulne M 2020 Int. J. Mod. Phys. E 29 2050089

    [41]

    Chen C H, Li Z K, Wang X H, Li R H, Fang F, Wang Z S, Li H X 2023 Acta Phys. Sin. 72 122902 (in Chinese) [陈翠红,李占奎,王秀华,李荣华,方芳,王柱生,李海霞 2023 72 122902]

    [42]

    Liu Y, Wang R, Mushtaq Z, Tian Y, He X, Qiu H, Chen X 2025 Chin. Phys. C 49 034103

    [43]

    Enciu M, Liu H N, Obertelli A, Doornenbal P, Nowacki F, Ogata K, Poves A, Yoshida K, Achouri N L 2022 Phys. Rev. Lett. 129 262501

  • [1] 刘香莲, 李凯宙, 李晓琼, 张强. 二维电介质光子晶体中量子自旋与谷霍尔效应共存的研究.  , doi: 10.7498/aps.72.20221814
    [2] 李涛, 黎春青, 周厚兵, 王宁. 原子核质量模型的检验.  , doi: 10.7498/aps.70.20201734
    [3] 黄伟其, 周年杰, 尹君, 苗信建, 黄忠梅, 陈汉琼, 苏琴, 刘世荣, 秦朝建. 硅量子点的形状及其弯曲表面效应.  , doi: 10.7498/aps.62.084205
    [4] 洪杰, 刘宝龙, 张大义, 马艳红. 具有形状记忆效应的新型智能阻尼材料及其热弹性力学性能研究.  , doi: 10.7498/aps.61.168102
    [5] 赵翠兰, 丛银川. 球壳量子点中极化子和量子比特的声子效应.  , doi: 10.7498/aps.61.186301
    [6] 张丽春, 李怀繁, 赵仁. 利用新的整体嵌入方法研究高维旋转黑洞的Hawking效应和Unruh效应.  , doi: 10.7498/aps.60.080403
    [7] 支启军. N=28丰中子核的形变和形状共存研究.  , doi: 10.7498/aps.60.052101
    [8] 罗礼进, 仲崇贵, 全宏瑞, 谭志中, 蒋青, 江学范. Heusler合金Mn2NiGe磁性形状记忆效应的第一性原理预测.  , doi: 10.7498/aps.59.8037
    [9] 丁斌刚, 张大立, 鲁定辉. 14O核中子闭壳效应的探讨.  , doi: 10.7498/aps.59.3142
    [10] 丁斌刚, 张大立, 鲁定辉. 传统中子幻数稳定性的研究.  , doi: 10.7498/aps.58.865
    [11] 吴亚敏, 陈国庆. 带壳颗粒复合介质光学双稳的温度效应.  , doi: 10.7498/aps.58.2056
    [12] 圣宗强, 郭建友. 相对论平均场理论对Se,Kr,Sr和Zr同位素链形状共存的系统研究.  , doi: 10.7498/aps.57.1557
    [13] 洪 昕, 杜丹丹, 裘祖荣, 张国雄. 半壳结构金纳米膜的局域表面等离子体共振效应.  , doi: 10.7498/aps.56.7219
    [14] 丁斌刚, 鲁定辉, 张大立. 用相对论平均场理论研究近滴线区原子核传统幻数的消失和新幻数的产生.  , doi: 10.7498/aps.56.6905
    [15] 刘军辉, 毛艳丽, 马文波, 吴谊群, 韩俊鹤, 翟凤潇. 一种新的芴类衍生物的三光子吸收诱导荧光和光限幅效应研究.  , doi: 10.7498/aps.54.5173
    [16] 葛四平, 朱 星, 杨威生. CuAg纳米结构表面共存和Ag表面对甘氨酸的新吸附行为.  , doi: 10.7498/aps.53.3447
    [17] 柳祝红, 胡凤霞, 王文洪, 陈京兰, 吴光恒, 高书侠, 敖玲. 哈斯勒合金Ni-Mn-Ga的马氏体相变和磁增强双向形状记忆效应.  , doi: 10.7498/aps.50.233
    [18] 赵峥, 刘辽. 对Hawking-Unruh效应的新认识.  , doi: 10.7498/aps.46.1036
    [19] 仝晓民, 李家明. 原子内壳层双光子衰变的相对论效应和屏蔽效应.  , doi: 10.7498/aps.38.1406
    [20] 陆埮, 罗辽复. 势阱结超导电流的新共振效应.  , doi: 10.7498/aps.24.419
计量
  • 文章访问数:  37
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2025-04-02

/

返回文章
返回
Baidu
map