Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Optimal design and experimental research of several-gigawatt multiple electron beam diode

Liu Zhen-Bang Jin Xiao Huang Hua Wang Teng-Fang Li Shi-Feng

Citation:

Optimal design and experimental research of several-gigawatt multiple electron beam diode

Liu Zhen-Bang, Jin Xiao, Huang Hua, Wang Teng-Fang, Li Shi-Feng
PDF
HTML
Get Citation
  • The relativistic klystron amplifier (RKA) is one of the most efficient sources to amplify a high-power microwave signal due to its intrinsic merit of high-power conversion efficiency, high gain and stable operating frequency. However, the transverse dimensions of the RKA dramatically decrease when the operating frequency increases to X band, and the power capacity of the RKA is limited by the transverse dimensions. An X-band multiple-beam relativistic klystron amplifier is proposed to overcome the radiation power limitation. Each electron beam propagates in separate drift tubes and shares the same coaxial interaction cavities in the multiple-beam relativistic klystron amplifier, and the transverse dimensions of the multiple-beam relativistic klystron amplifier are free from the operating frequency restriction and a microwave power of over 1 GW is generated in the experiment. For a high-power electron device, the transmission of electron beam is critical, and the power conversion efficiency of the device is affected. In this paper, we conduct an investigation into the transmission process of the intense relativistic multiple electron beams, and the number of the multiple electron beams is set to be 16. It is found that when the multiple electron beam is transmitted in the device, the electron beam rotates around the center of the whole device, causing the electron beam to deviate from the drift tube channel. At the same time, each electron beam rotates around itself, and the cross section of the electron beam is deformed and expanded. In the improper design of electron beam and drift tube parameters, two kinds of rotating motions cause beam to lose. A multiple-electron-beam diode structure is optimized by the particle-in-cell simulation to reduce beam loss, with the effects of the related factors taken into account. Each pole of the cathodes is made up of graphite and stainless steel. The cathode head is made up of graphite, for the graphite has a lower emission threshold. The cathode base and cathode pole are made up of stainless steel, for the stainless steel has a higher emission threshold. Also the shape and structure of cathode pole, cathode head and anode are optimized to reduce the electric field intensity on the cathode pole and enhance the electric field intensity on the end face of cathode head. At the same time, the electric field distribution of the cathode head is uniform to improve the electron beam emission uniformity. The simulation results demonstrate that the transmission efficiency of multiple electron beams can reach 99%. In the experiment, the transmission efficiency of multiple electron beams is 92% with a beam voltage and beam current of 801 kV and 9.3 kA, respectively.
      Corresponding author: Liu Zhen-Bang, liu9559@yeah.net
    • Funds: Project supported by the Science Foundation of the High Power Microwave Laboratory, China (Grant Nos. 6142605180203, JCKYS2018212035, 6142605190201)
    [1]

    Benford J, Swegle J A 著 (江伟华, 张弛 译) 2009 高功率微波 (第二版) (中译本) (北京: 国防工业出版社) 第3−5页

    Benford J, Swegle J A (translated by Jiang W H, Zhang C) 2008 High Power Microwave (2nd Ed.) (Beijing: National Defense Industry Press) pp3−5 (in Chinese)

    [2]

    丁耀根 2010 大功率速调管的制造和应用 (北京: 国防工业出版社) 第7−13页

    Ding Y G 2010 Design, Manufacture and Application of High Power Klystron (Beijing: National Defense Industry Press) pp7−13 (in Chinese)

    [3]

    Robert J B, Edl S 2005 高功率微波源与技术 (中译本) (北京: 清华大学出版社) 第282−289页

    Robert J B, Edl S 2005 High Power Microwave Sources and Technologies (Beijing: Tsinghua University Press) pp282−289 (in Chinese)

    [4]

    黄华, 吴洋, 刘振帮, 袁欢, 何琥, 李乐乐, 李正红, 金晓, 马弘舸 2018 67 088402Google Scholar

    Huang H, Wu Y, Liu Z B, Yuan H, He H, Li L L, Li Z H, Jin X, Ma H G 2018 Acta Phys. Sin. 67 088402Google Scholar

    [5]

    吴洋, 许州, 周霖, 李文君, 唐传祥 2012 61 224101Google Scholar

    Wu Y, Xu Z, Zhou L, Li W J, Tang C X 2012 Acta Phys. Sin. 61 224101Google Scholar

    [6]

    Thomas H, Adam B, Rasheda B, Heinz B, Mark C, Edward E, Deepika G, Armand S, Brad S, Lou Z 2010 IEEE Trans. Plasma Sci. 38 1264Google Scholar

    [7]

    Ding Y G, Shen B, Cao J, et al. 2009 IEEE Trans. Electron Dev. 56 870Google Scholar

    [8]

    Li R J, Ruan C J, Zhang H F 2018 Phys. Plasmas 25 033107Google Scholar

    [9]

    Friedman M, Pasour J, Smithe D 1997 Appl. Phys. Lett. 71 3724Google Scholar

    [10]

    魏元璋, 李士锋, 王战亮, 黄华, 刘振帮, 何琥, 宫玉彬 2018 强激光与粒子束 30 063007Google Scholar

    Wei Y Z, Li S F, Wang Z L, Huang H, Liu Z B, He H, Gong Y B 2018 High Power Laser and Particle Beams 30 063007Google Scholar

    [11]

    Edward B A, Andrew N D, Mikhail I F, et al. 2002 IEEE Trans. Plasma Sci. 30 1041Google Scholar

    [12]

    Zhang W, Ju J C, Zhang J, Zhou Y X, Zhong H H 2019 Phys. Plasmas 26 053102Google Scholar

    [13]

    Qi Z M, Zhang J, Zhang Q, Zhong H H, Xu L R, Yang L 2016 IEEE Electron Device Lett. 37 782Google Scholar

    [14]

    刘振帮, 金晓, 黄华, 陈怀璧 2012 61 128401Google Scholar

    Liu Z B, Jin X, Huang H, Chen H B 2012 Acta Phys. Sin. 61 128401Google Scholar

    [15]

    刘振帮, 黄华, 金晓, 袁欢, 戈弋, 何琥, 雷禄容 2015 64 018401Google Scholar

    Liu Z B, Huang H, Jin X, Yuan H, Ge Y, He H, Lei L R 2015 Acta Phys. Sin. 64 018401Google Scholar

    [16]

    Liu Z B, Huang H, Jin X, Lei L R, Zhu L, Li L L, Li S F, Yan W K, He H 2016 Phys. Plasmas 23 093110Google Scholar

    [17]

    刘振帮, 金晓, 黄华, 陈怀璧, 王淦平 2012 61 248401Google Scholar

    Liu Z B, Jin X, Huang H, Chen H B, Wang G P 2012 Acta Phys. Sin. 61 248401Google Scholar

    [18]

    王淦平, 金晓, 黄华, 刘振帮 2017 66 044102Google Scholar

    Wang G P, Jin X, Huang H, Liu Z B 2017 Acta Phys. Sin. 66 044102Google Scholar

    [19]

    谢家麟, 赵永翔 1966 速调管群聚理论 (北京: 科学出版社) 第104—108, 208—209页

    Xie J L, Zhao Y X 1966 Bunching Theory of Klystron (Beijing: Science Press) pp104–108, 208–209 (in Chinese)

    [20]

    王文祥 2009 微波工程技术 (北京: 国防工业出版社) 第44, 45页

    Wang W X 2009 Microwave Project and Technology (Beijing: National Defense Industry Press) pp44, 45 (in Chinese)

  • 图 1  强流多注电子束二极管结构示意图 (a) y-z截面; (b)漂移管处x-y截面

    Figure 1.  Sketch structure of the multiple electron beams diode: (a) The y-z section; (b) the x-y section of drift tubes.

    图 2  多注电子束到达阳极端面时绕系统中心的旋转距离Δl0随引导磁场的变化

    Figure 2.  Rotation distance Δl0 vs. Bz at different U0. Δl0 represents the rotation distance of the multi-beams around the center of the system when they reach the anode end face

    图 3  多注电子束在漂移管中的旋转角速度${r_0}\dot \theta_2$随引导磁场的变化

    Figure 3.  Rotation angular velocity ${r_0} \dot\theta_2$ vs. Bz at different U0. ${r_0} \dot\theta_2$ represents the rotation angular velocity of multi-beams in drift tube.

    图 4  多注电子束绕束自身旋转角速度${r_{\rm{b}}}{{\mathop \theta \limits^. }_3}$随引导磁场的变化

    Figure 4.  Angular velocity of the multi-beams rotation around themselves ${r_{\rm{b}}}{{\mathop \theta \limits^. }_3}$ vs. Bz at different U0. ${r_{\rm{b}}}{{\mathop \theta \limits^. }_3}$ represents the angular velocity of the multi-beams rotation around themselves.

    图 5  优化设计前后的多注阴极结构与电场分布 (a)改进设计前; (b)改进设计后

    Figure 5.  Electric field distribution of the multi-beam cathodes: (a) Before the improved design; (b) improved design.

    图 6  多注电子束在二极管和漂移管中传输

    Figure 6.  Tracks of the multiple electron beams in the diode and drift tubes.

    图 7  多注电子束在离阴极头端面不同距离处的束斑 (a)距离 1 mm; (b)距离40 mm; (c)距离640 mm

    Figure 7.  Transections of the multiple electron beams with different distance between the cathode head: (a) The distance of 1 mm; (b) the distance of 40 mm; (c) the distance of 640 mm.

    图 8  多注电子束束流测量实验示意图

    Figure 8.  Sketch structure of the experimental system for multi-beams measurement.

    图 9  电子束电压、电流与法拉第筒电流波形

    Figure 9.  Voltage, current, and Faraday-cup current of the electron beam.

    图 10  多注漂移管末端的电子束束斑

    Figure 10.  Spots of the multiple electron beams at the end of the drift tube.

    图 11  多注电子束束斑尺寸分布

    Figure 11.  Size of the multiple electron beams spots

    表 1  电子束电压、电流以及末端法拉第筒电流参数

    Table 1.  Electron beam voltage, current and terminal Faraday tube current parameters.

    序号电压/kV电流/kA末端电流/kA通过率/%
    18009.38.692.4
    28059.38.692.4
    37999.28.592.4
    平均8019.38.692.4
    DownLoad: CSV
    Baidu
  • [1]

    Benford J, Swegle J A 著 (江伟华, 张弛 译) 2009 高功率微波 (第二版) (中译本) (北京: 国防工业出版社) 第3−5页

    Benford J, Swegle J A (translated by Jiang W H, Zhang C) 2008 High Power Microwave (2nd Ed.) (Beijing: National Defense Industry Press) pp3−5 (in Chinese)

    [2]

    丁耀根 2010 大功率速调管的制造和应用 (北京: 国防工业出版社) 第7−13页

    Ding Y G 2010 Design, Manufacture and Application of High Power Klystron (Beijing: National Defense Industry Press) pp7−13 (in Chinese)

    [3]

    Robert J B, Edl S 2005 高功率微波源与技术 (中译本) (北京: 清华大学出版社) 第282−289页

    Robert J B, Edl S 2005 High Power Microwave Sources and Technologies (Beijing: Tsinghua University Press) pp282−289 (in Chinese)

    [4]

    黄华, 吴洋, 刘振帮, 袁欢, 何琥, 李乐乐, 李正红, 金晓, 马弘舸 2018 67 088402Google Scholar

    Huang H, Wu Y, Liu Z B, Yuan H, He H, Li L L, Li Z H, Jin X, Ma H G 2018 Acta Phys. Sin. 67 088402Google Scholar

    [5]

    吴洋, 许州, 周霖, 李文君, 唐传祥 2012 61 224101Google Scholar

    Wu Y, Xu Z, Zhou L, Li W J, Tang C X 2012 Acta Phys. Sin. 61 224101Google Scholar

    [6]

    Thomas H, Adam B, Rasheda B, Heinz B, Mark C, Edward E, Deepika G, Armand S, Brad S, Lou Z 2010 IEEE Trans. Plasma Sci. 38 1264Google Scholar

    [7]

    Ding Y G, Shen B, Cao J, et al. 2009 IEEE Trans. Electron Dev. 56 870Google Scholar

    [8]

    Li R J, Ruan C J, Zhang H F 2018 Phys. Plasmas 25 033107Google Scholar

    [9]

    Friedman M, Pasour J, Smithe D 1997 Appl. Phys. Lett. 71 3724Google Scholar

    [10]

    魏元璋, 李士锋, 王战亮, 黄华, 刘振帮, 何琥, 宫玉彬 2018 强激光与粒子束 30 063007Google Scholar

    Wei Y Z, Li S F, Wang Z L, Huang H, Liu Z B, He H, Gong Y B 2018 High Power Laser and Particle Beams 30 063007Google Scholar

    [11]

    Edward B A, Andrew N D, Mikhail I F, et al. 2002 IEEE Trans. Plasma Sci. 30 1041Google Scholar

    [12]

    Zhang W, Ju J C, Zhang J, Zhou Y X, Zhong H H 2019 Phys. Plasmas 26 053102Google Scholar

    [13]

    Qi Z M, Zhang J, Zhang Q, Zhong H H, Xu L R, Yang L 2016 IEEE Electron Device Lett. 37 782Google Scholar

    [14]

    刘振帮, 金晓, 黄华, 陈怀璧 2012 61 128401Google Scholar

    Liu Z B, Jin X, Huang H, Chen H B 2012 Acta Phys. Sin. 61 128401Google Scholar

    [15]

    刘振帮, 黄华, 金晓, 袁欢, 戈弋, 何琥, 雷禄容 2015 64 018401Google Scholar

    Liu Z B, Huang H, Jin X, Yuan H, Ge Y, He H, Lei L R 2015 Acta Phys. Sin. 64 018401Google Scholar

    [16]

    Liu Z B, Huang H, Jin X, Lei L R, Zhu L, Li L L, Li S F, Yan W K, He H 2016 Phys. Plasmas 23 093110Google Scholar

    [17]

    刘振帮, 金晓, 黄华, 陈怀璧, 王淦平 2012 61 248401Google Scholar

    Liu Z B, Jin X, Huang H, Chen H B, Wang G P 2012 Acta Phys. Sin. 61 248401Google Scholar

    [18]

    王淦平, 金晓, 黄华, 刘振帮 2017 66 044102Google Scholar

    Wang G P, Jin X, Huang H, Liu Z B 2017 Acta Phys. Sin. 66 044102Google Scholar

    [19]

    谢家麟, 赵永翔 1966 速调管群聚理论 (北京: 科学出版社) 第104—108, 208—209页

    Xie J L, Zhao Y X 1966 Bunching Theory of Klystron (Beijing: Science Press) pp104–108, 208–209 (in Chinese)

    [20]

    王文祥 2009 微波工程技术 (北京: 国防工业出版社) 第44, 45页

    Wang W X 2009 Microwave Project and Technology (Beijing: National Defense Industry Press) pp44, 45 (in Chinese)

  • [1] Pan Jia-Ping, Zhang Ye-Wen, Li Jun, Lü Tian-Hua, Zheng Fei-Hu. Migration behavior of space charge packet researched by using electron beam irradiation and real-time space charge distribution measurement in piezo-pressure wave propagation (PWP) method. Acta Physica Sinica, 2024, 73(2): 027701. doi: 10.7498/aps.73.20231353
    [2] Wang Gan-Ping, Jin Xiao, Huang Hua, Liu Zhen-Bang. Angular drift of the high current relativistic multi-beam in the hollow cylindrical waveguide. Acta Physica Sinica, 2017, 66(4): 044102. doi: 10.7498/aps.66.044102
    [3] Li Jie, Gao Jin, Wan Fa-Rong. The change of microstructure in deuteron-implanted aluminum under electron irradiation. Acta Physica Sinica, 2016, 65(2): 026102. doi: 10.7498/aps.65.026102
    [4] Ji Le, Yang Sheng-Zhi, Cai Jie, Li Yan, Wang Xiao-Tong, Zhang Zai-Qiang, Hou Xiu-Li, Guan Qing-Feng. Damage and structural defects in the surface lager of pure molybdenum induced by high-current pulsed electron beam. Acta Physica Sinica, 2013, 62(23): 236103. doi: 10.7498/aps.62.236103
    [5] Li Yuan, Mu Hai-Bao, Deng Jun-Bo, Zhang Guan-Jun, Wang Shu-Hong. Simulational study on streamer discharge in transformer oil under positive nanosecond pulse voltage. Acta Physica Sinica, 2013, 62(12): 124703. doi: 10.7498/aps.62.124703
    [6] Zuo Ying-Hong, Wang Jian-Guo, Fan Ru-Yu. Influence of space charge effect on Nottingham effect in thermal field emission. Acta Physica Sinica, 2013, 62(24): 247901. doi: 10.7498/aps.62.247901
    [7] Peng Kai, Liu Da-Gang. Numerical simulation and study of three-dimensional thermal field emission. Acta Physica Sinica, 2012, 61(12): 121301. doi: 10.7498/aps.61.121301
    [8] Zhang Ling-Zi, Zuo Yu-Hua, Cao Quan, Xue Chun-Lai, Cheng Bu-Wen, Zhang Wan-Chang, Cao Xue-Lei, Wang Qi-Ming. High-speed and high-power uni-traveling-carrier photodetector. Acta Physica Sinica, 2012, 61(13): 138501. doi: 10.7498/aps.61.138501
    [9] Zuo Ying-Hong, Wang Jian-Guo, Fan Ru-Yu. Influence of diode gap distance on space charge effects in field emission. Acta Physica Sinica, 2012, 61(21): 215202. doi: 10.7498/aps.61.215202
    [10] Wu Tao, Huang Hua, Wang Gan-Ping, Jin Xiao, Liu Zhen-Bang, Chen Zhao-Fu, Ren Yi-Hao, Chen Yong-Dong, Wang Qing-Yuan. The generation and transmission research of the fan-shaped multi-beam intense relativistic electron beams. Acta Physica Sinica, 2012, 61(18): 184218. doi: 10.7498/aps.61.184218
    [11] Liu Zhen-Bang, Jin Xiao, Huang Hua, Chen Huai-Bi, Wang Gan-Ping. Preliminary study of the characteristic of multi-beam in intense multi-beam relativistic klystron. Acta Physica Sinica, 2012, 61(24): 248401. doi: 10.7498/aps.61.248401
    [12] Du Guang-Xing, Qian Bao-Liang. Propagation of the intense relativistic sheet electron beam with a quasi-rectangular cross section. Acta Physica Sinica, 2010, 59(7): 4626-4633. doi: 10.7498/aps.59.4626
    [13] Yuan Yong-Teng, Hao Yi-Dan, Zhao Zong-Qing, Hou Li-Fei, Miao Wen-Yong. Dynamic range of X-ray streak camera affected by space charge effect. Acta Physica Sinica, 2010, 59(10): 6963-6968. doi: 10.7498/aps.59.6963
    [14] Cheng Du-Qing, Guan Qing-Feng, Zhu Jian, Qiu Dong-Hua, Cheng Xiu-Wei, Wang Xue-Tao. Mechanism of surface nanocrystallization in pure nickel induced by high-current pulsed electron beam. Acta Physica Sinica, 2009, 58(10): 7300-7306. doi: 10.7498/aps.58.7300
    [15] Zhang Yong-Peng, Liu Guo-Zhi, Shao Hao, Yang Zhan-Feng, Song Zhi-Min, Lin Yu-Zheng. Steady transmission characteristics of intense electron beams in one-dimensional drift spaces. Acta Physica Sinica, 2009, 58(10): 6973-6978. doi: 10.7498/aps.58.6973
    [16] Sun Xia, You Si-Fang, Xiao Pei, Ding Ze-Jun. Simulation of the proximity effect of electron beam lithography. Acta Physica Sinica, 2006, 55(1): 148-154. doi: 10.7498/aps.55.148
    [17] Hu Min, Zhu Da-Jun, Liu Sheng-Gang. Longitudinal self-modulation of an intense relativistic electron beam in a two-cavity system. Acta Physica Sinica, 2005, 54(6): 2633-2637. doi: 10.7498/aps.54.2633
    [18] Guan Qing-Feng, An Chun-Xiang, Qin Ying, Zou Jian-Xin, Hao Sheng-Zhi, Zhang Qing-Yu, Dong Chuang, Zou Guang-Tian. Microstructure induced by stress generated by high-current pulsed electron beam. Acta Physica Sinica, 2005, 54(8): 3927-3934. doi: 10.7498/aps.54.3927
    [19] Zhang Yong-Hui, Ma Qiao-Sheng, Xiang Fei, Gan Yan-Qing, Chang An-Bi, Liu Zhong, Zhou Chuan-Ming. Transmission technigue of repetition pulse and intense current electron-beam. Acta Physica Sinica, 2005, 54(7): 3111-3115. doi: 10.7498/aps.54.3111
    [20] HSIEH CHIA-LIN. SPACE-CHARGE WAVE THEORY OF MULTIPLE BUNCHING. Acta Physica Sinica, 1957, 13(1): 16-29. doi: 10.7498/aps.13.16
Metrics
  • Abstract views:  4696
  • PDF Downloads:  56
  • Cited By: 0
Publishing process
  • Received Date:  14 August 2020
  • Accepted Date:  09 September 2020
  • Available Online:  24 January 2021
  • Published Online:  05 February 2021

/

返回文章
返回
Baidu
map