搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

准矩形截面强流相对论带状电子束的传输

杜广星 钱宝良

引用本文:
Citation:

准矩形截面强流相对论带状电子束的传输

杜广星, 钱宝良

Propagation of the intense relativistic sheet electron beam with a quasi-rectangular cross section

Du Guang-Xing, Qian Bao-Liang
PDF
导出引用
  • 提出利用准矩形截面带状电子束传输强电流.相对于目前广泛采用的椭圆形截面带状电子束,在大横纵比,即电子束的宽度(横向)远大于厚度(纵向)的情况下,其厚度沿横向更加均匀,利用冷阴极爆炸发射容易产生.该电子束利于高功率微波发生器中腔体模式的控制和束波作用效率的提高,如果利用模块化的结构还可使阴极及聚焦磁铁在宽度上的扩展更加容易.首先给出了准矩形截面带状电子束空间电荷场的典型分布,然后根据该分布和束匹配的方法对相互独立的周期会切磁铁和边聚焦磁铁分别进行了设计.其中边聚焦磁铁的磁化方向与以往的纵向不同,为横向磁化,
    The sheet electron beam with a quasi-rectangular cross section has been proposed to carry intense current. Obviously different from the elliptical sheet electron beam with the same high aspect ratio, this kind of beam is almost uniform in thickness, and can be generated by the cold metal cathode. Besides, the uniform thickness leads to uniform beam power in the horizontal direction, implying less modes but better counteraction between the beam and microwave. In addition, the uniform thickness make the width of the propagation system,including the cold cathode, the microwave cavities and the focusing magnets,easily changed. Firstly,the space-charge electric field of the sheet electron beam was analyzed numerically, then the focusing magnets, including the periodic cusped magnets and quadrupole magnets, were designed according to the space-charge electric field for beam matching. To validate the above theoretical analysis, particle-in-cell simulation was performed, which shows that the 300 keV, 3 kA sheet electron beam can be well focused by the 0.163 T periodic cusped magnetic fields with the 0.064 T quadrupole magnetic fields. More than 98% of the total current has been propagated through the distance of 300 mm.
    • 基金项目: 国家高技术研究发展计划资助的课题.
    [1]

    Kyhl R L, Webster H F 1956 IEEE Trans. Electron Dev. ED-3 172

    [2]

    Webster H F 1955 J. Appl. Phys. 26 1386

    [3]

    Davidson R C, Tsang K T, Uhm H S 1988 Phys. Fluids 31 1727

    [4]

    Uhm H S, Shahar B M, Yu D 1994 Phys. Plasmas 1 3686

    [5]

    Booske J H, McVey B D, Antonsen Jr T M 1993 J. Appl. Phys. 73 4140

    [6]

    Read M E, Jabotinski V, Miram G, Ives L 2005 IEEE Trans. Plasma Sci. 33 647

    [7]

    Cheng S, Destler W W, Granatstein V L, Antonsen Jr T M, Levush B, Rodgers J, Zhang Z X 1996 IEEE Trans. Plasma Sci. 24 750

    [8]

    Booske J H, Radack D J, Antonsen Jr T M, Bidwell S W, Carmel Y, Destler W W, Freund H P, Granatstein V L, Latham P E, Levush B, Mayergoyz I D, Serbeto A 1990 IEEE Trans. Plasma Sci. 18 399

    [9]

    Carlsten B E, Earley L M, Haynes W B, Wheat R M 2002 AIP Conf. Proc. 625 117

    [10]

    Wang S Z, Wang Y, Ding Y G, Ruan C J 2007 High Power Laser and Particle Beams 19 1517 (in Chinese) [王树忠、王 勇、丁耀根、阮存军 2007 强激光与粒子束 19 1517]

    [11]

    Scheitrum G 2006 AIP Conf. Proc. 807 120

    [12]

    Danly B G,Petillo J J,Qiu J X,Levush B 2006 IEEE International Vacuum Electronics Conference,Held Jointly with 2006 IEEE International Vacuum Electron Sources pp115, 116

    [13]

    Department of Energy, Washington, DC 2005 NTIS Accession: DE2005831150

    [14]

    Zhao D 2010 Acta Phys. Sin. 59 1712 (in Chinese) [赵 鼎 2010 59 1712]

    [15]

    Du G X, Qian B L 2009 High Power Laser and Particle Beams 21 889 (in Chinese) [杜广星、钱宝良 2009 强激光与粒子束 21 889]

    [16]

    Du G X, Qian B L 2009 Acta Phys. Sin.59 1726 (in Chinese) [杜广星、钱宝良 2009 59 1726]

    [17]

    Booske J H, Basten M A, Kumbasar A H, Antonsen Jr T M, Bidwell S W, Carmel Y, Destler W W, Granatstein V L, Radack D J 1994 Phys. Plasmas 1 1714

    [18]

    Basten M A, Booske J H 1999 J. Appl. Phys. 85 6313

  • [1]

    Kyhl R L, Webster H F 1956 IEEE Trans. Electron Dev. ED-3 172

    [2]

    Webster H F 1955 J. Appl. Phys. 26 1386

    [3]

    Davidson R C, Tsang K T, Uhm H S 1988 Phys. Fluids 31 1727

    [4]

    Uhm H S, Shahar B M, Yu D 1994 Phys. Plasmas 1 3686

    [5]

    Booske J H, McVey B D, Antonsen Jr T M 1993 J. Appl. Phys. 73 4140

    [6]

    Read M E, Jabotinski V, Miram G, Ives L 2005 IEEE Trans. Plasma Sci. 33 647

    [7]

    Cheng S, Destler W W, Granatstein V L, Antonsen Jr T M, Levush B, Rodgers J, Zhang Z X 1996 IEEE Trans. Plasma Sci. 24 750

    [8]

    Booske J H, Radack D J, Antonsen Jr T M, Bidwell S W, Carmel Y, Destler W W, Freund H P, Granatstein V L, Latham P E, Levush B, Mayergoyz I D, Serbeto A 1990 IEEE Trans. Plasma Sci. 18 399

    [9]

    Carlsten B E, Earley L M, Haynes W B, Wheat R M 2002 AIP Conf. Proc. 625 117

    [10]

    Wang S Z, Wang Y, Ding Y G, Ruan C J 2007 High Power Laser and Particle Beams 19 1517 (in Chinese) [王树忠、王 勇、丁耀根、阮存军 2007 强激光与粒子束 19 1517]

    [11]

    Scheitrum G 2006 AIP Conf. Proc. 807 120

    [12]

    Danly B G,Petillo J J,Qiu J X,Levush B 2006 IEEE International Vacuum Electronics Conference,Held Jointly with 2006 IEEE International Vacuum Electron Sources pp115, 116

    [13]

    Department of Energy, Washington, DC 2005 NTIS Accession: DE2005831150

    [14]

    Zhao D 2010 Acta Phys. Sin. 59 1712 (in Chinese) [赵 鼎 2010 59 1712]

    [15]

    Du G X, Qian B L 2009 High Power Laser and Particle Beams 21 889 (in Chinese) [杜广星、钱宝良 2009 强激光与粒子束 21 889]

    [16]

    Du G X, Qian B L 2009 Acta Phys. Sin.59 1726 (in Chinese) [杜广星、钱宝良 2009 59 1726]

    [17]

    Booske J H, Basten M A, Kumbasar A H, Antonsen Jr T M, Bidwell S W, Carmel Y, Destler W W, Granatstein V L, Radack D J 1994 Phys. Plasmas 1 1714

    [18]

    Basten M A, Booske J H 1999 J. Appl. Phys. 85 6313

  • [1] 袁鹏举, 杨蕴哲, 董世杰, 唐苗苗. 镜像与反镜像扭曲高斯谢尔模光束的传输特性.  , 2024, 73(21): 214201. doi: 10.7498/aps.73.20241023
    [2] 刘振帮, 金晓, 黄华, 王腾钫, 李士锋. 吉瓦级强流相对论多注电子束二极管的优化设计与实验研究.  , 2021, 70(3): 038401. doi: 10.7498/aps.70.20201336
    [3] 郭良浩, 王少萌, 杨利霞, 王凯程, 马佳路, 周俊, 宫玉彬. 太赫兹波在神经细胞中传输的弱谐振效应.  , 2021, 70(24): 240301. doi: 10.7498/aps.70.20211677
    [4] 王淦平, 金晓, 黄华, 刘振帮. 强流相对论多注电子束在空心圆柱波导中的漂移.  , 2017, 66(4): 044102. doi: 10.7498/aps.66.044102
    [5] 刘永欣, 陈子阳, 蒲继雄. 随机电磁高阶Bessel-Gaussian光束在海洋湍流中的传输特性.  , 2017, 66(12): 124205. doi: 10.7498/aps.66.124205
    [6] 刘振帮, 金晓, 黄华, 陈怀璧, 王淦平. 强流多注相对论速调管中电子束特性的初步研究.  , 2012, 61(24): 248401. doi: 10.7498/aps.61.248401
    [7] 苏东, 唐昌建. 相对论电子束在动态加载等离子体中的自聚焦传输.  , 2012, 61(4): 042501. doi: 10.7498/aps.61.042501
    [8] 吴涛, 黄华, 王淦平, 金晓, 刘振帮, 陈昭福, 任屹灏, 陈永东, 王清源. 扇形多注强流相对论电子束的产生与传输研究.  , 2012, 61(18): 184218. doi: 10.7498/aps.61.184218
    [9] 丁攀峰, 蒲继雄. 部分相干涡旋光束传输中的光斑分析.  , 2012, 61(17): 174201. doi: 10.7498/aps.61.174201
    [10] 黄永超, 张廷蓉, 陈森会, 宋宏远, 李艳桃, 张伟林. 椭圆高斯光束在单轴晶体中垂直于光轴的传输特性.  , 2011, 60(7): 074212. doi: 10.7498/aps.60.074212
    [11] 丁攀峰, 蒲继雄. 拉盖尔高斯涡旋光束的传输.  , 2011, 60(9): 094204. doi: 10.7498/aps.60.094204
    [12] 阮存军, 王树忠, 韩莹, 李庆生. 高传输通过率带状电子注聚焦与传输特性的研究.  , 2011, 60(8): 084105. doi: 10.7498/aps.60.084105
    [13] 刘静, 舒挺, 李志强. 层流平衡相对论电子束束流特性的数值计算.  , 2010, 59(3): 1895-1901. doi: 10.7498/aps.59.1895
    [14] 杜广星, 钱宝良. 偏置磁极周期会切永磁场的理论分析.  , 2010, 59(3): 1726-1733. doi: 10.7498/aps.59.1726
    [15] 梁林云, 戴松元, 方霞琴, 胡林华. 染料敏化太阳电池中TiO2膜内电子传输和背反应特性研究.  , 2008, 57(3): 1956-1962. doi: 10.7498/aps.57.1956
    [16] 颜森林. 混沌信号在光纤传输过程中的非线性演化.  , 2007, 56(4): 1994-2004. doi: 10.7498/aps.56.1994
    [17] 胡 旻, 祝大军, 刘盛纲. 强流相对论电子束双腔纵向自调制研究.  , 2005, 54(6): 2633-2637. doi: 10.7498/aps.54.2633
    [18] 殷建玲, 刘承宜, 杨友源, 刘 江, 范广涵. 原子激光传输的有效ABCD形式研究.  , 2004, 53(2): 356-361. doi: 10.7498/aps.53.356
    [19] 苏纬仪, 杨 涓, 魏 昆, 毛根旺, 何洪庆. 金属平板前等离子体的电磁波功率反射系数计算分析.  , 2003, 52(12): 3102-3107. doi: 10.7498/aps.52.3102
    [20] 石秉仁. 相对论性电子束的类Tokamak平衡.  , 1983, 32(4): 507-514. doi: 10.7498/aps.32.507
计量
  • 文章访问数:  7810
  • PDF下载量:  615
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-08-29
  • 修回日期:  2009-10-26
  • 刊出日期:  2010-07-15

/

返回文章
返回
Baidu
map