-
There are many resonance phenomena in a nonlinear dynamical system subjected to forced excitation, especially the excitation with multiple frequencies. Duffing oscillator subjected to the excitation with multiple frequencies may exhibit some complex resonance phenomena, such as simultaneous resonance and combination resonance. In this paper, the simultaneous primary and super-harmonic resonance of Duffing oscillator is studied, and it is analyzed in periodic motion and chaotic motion. Firstly, the approximate analytical solution is obtained by the method of multiple scales, and the correctness and accuracy of the analytical solution are verified through numerical simulation. Furthermore, the amplitude-frequency equation and phase-frequency equation of the steady-state response are derived from the approximate solution, and the stability of the steady-state response is analyzed based on Lyapunov’s first method. It is found that there are at most two stable periodic solutions and one unstable periodic solution. The effects of nonlinear stiffness on steady-state response is also analyzed through numerical simulation. However, the approximate solution obtained by the singular perturbation method is not sufficient to describe the global characteristics of the system, therefore, the necessary condition for the chaos in the sense of Smale horseshoes is derived based on the Melnikov method. Finally, one-demonstrational system that meets the condition of simultaneous resonance is analyzed through numerical simulation, and the bifurcation diagram shows the two thresholds of the demonstration system. At the first threshold, the heteroclinic orbit of the system breaks, and the system goes to chaos in crisis way. At the second threshold, the crisis reappears and the new strange attractor appears. The variation of the first critical value under various frequency combinations is investigated based on the Melnikov method, and the results are compared with the results of numerical simulation. The analytical and numerical results are qualitatively the same although there is a quantitative difference between them.
-
Keywords:
- Duffing system /
- simultaneous resonance /
- nonlinear dynamical system /
- chaos
[1] 孟光, 薛中擎 1989 航空动力学报 2 173
Meng G, Xue Z Q 1989 J. Aerosp. Power 2 173
[2] Ertas A, Chew E K 1990 Int. J. Non Linear Mech. 25 241Google Scholar
[3] Pan R, Davies H G 1996 Nonlinear Dyn. 9 349Google Scholar
[4] 刘亚冲 2019 船舶力学 23 135Google Scholar
Liu Y C 2019 J. Ship Mech. 23 135Google Scholar
[5] Huan R H, Zhu W Q, Ma F, Ying Z G 2014 Nonlinear Dyn. 76 765Google Scholar
[6] 宦荣华, 宋亚轻, 朱位秋 2014 浙江大学学报(工学版) 48 321
Huan R H, Song Y Q, Zhu W Q 2014 J. Zhejiang Univ. (Eng. Sci.) 48 321
[7] Hu N Q, Wen X S 2003 J. Sound Vibr. 268 917Google Scholar
[8] 姚海洋, 王海燕, 张之琛, 申晓红 2017 66 124302Google Scholar
Yao H Y, Wang H Y, Zhang Z C, Shen X H 2017 Acta Phys. Sin. 66 124302Google Scholar
[9] 曹保锋, 李鹏, 李小强, 张雪芹, 宁王师, 梁睿, 李欣, 胡淼, 郑毅 2019 68 0805010
Cao B F, Li P, Li X Q, Zhang X Q, Ning W S, Liang R, Li X, Hu M, Zheng Y 2019 Acta Phys. Sin. 68 0805010
[10] Erturk A, Inman D J 2011 J. Sound Vibr. 330 2339Google Scholar
[11] Wang Y L, Yang Z B, Li P Y, Cao D Q, Huang W H, Inman D J 2020 Nano Energy 75 104853Google Scholar
[12] Shen Y J, Yang S P, Xing H J, Gao G S 2012 Commun. Nonlinear Sci. Numer. Simul. 17 3092Google Scholar
[13] Shen Y J, Yang S P, Xing H J, Ma H X 2012 Int. J. Non Linear Mech. 47 975Google Scholar
[14] Agarwal V, Zheng X, Balachandran B 2018 Phys. Lett. A 382 3355Google Scholar
[15] 温少芳, 申永军, 杨绍普 2016 65 094502Google Scholar
Wen S F, Shen Y J, Yang S P 2016 Acta Phys. Sin. 65 094502Google Scholar
[16] 杨晓丽, 徐伟, 孙中奎 2006 55 1678Google Scholar
Yang X L, Xu W, Sun Z K 2006 Acta Phys. Sin. 55 1678Google Scholar
[17] 马少娟, 徐伟, 李伟 2006 55 4013Google Scholar
Ma S J, Xu W, Li W 2006 Acta Phys. Sin. 55 4013Google Scholar
[18] 吴存利, 马少娟, 孙中奎, 方同 2006 55 6253Google Scholar
Wu C L, Ma S J, Sun Z K, Fang T 2006 Acta Phys. Sin. 55 6253Google Scholar
[19] Niu J C, Liu R Y, Shen Y J, Yang S P 2019 Chaos 29 123106Google Scholar
[20] Liu X J, Li H, Jiang J, Tang D F, Yang L X 2016 Nonlinear Dyn. 83 1419Google Scholar
[21] Shen Y J, Wen S F, Li X H, Yang S P, Xing H J 2016 Nonlinear Dyn. 85 1457Google Scholar
[22] Niu J C, Shen Y J, Yang S P, Li S J 2018 J. Vib. Control 24 3744Google Scholar
[23] Hassan A 1994 J. Sound Vibr. 172 513Google Scholar
[24] Van K N, Chien T Q 2016 J. Comput. Nonlinear Dyn. 11 051018Google Scholar
[25] Yang S P, Nayfeh A H, Mook D T 1998 Acta Mech. 131 235Google Scholar
[26] 李航, 申永军, 李向红, 韩彦军, 彭孟菲 2020 力学学报 52 514Google Scholar
Li H, Shen Y J, Li X H, Han Y J, Peng M F 2020 Chin. J. Theor. Appl. Mech. 52 514Google Scholar
[27] Nayfeh A H, Mook D T 2008 Nonlinear oscillations (New York: John Wiley & Sons) pp162–192
[28] Szemplinska-Stupnicka W, Bajkowski J 1986 Int. J. Non Linear Mech. 21 401Google Scholar
[29] Van Dooren R 1988 J. Sound Vibr. 123 327Google Scholar
[30] 毕勤胜, 陈予恕, 吴志强 1998 应用数学和力学 19 113
Bi Q S, Chen Y S, Wu Z Q 1998 Appl. Math. Mech. 19 113
[31] 胡海岩 2000 应用非线性动力学 (北京: 航空工业出版社) 第25−30页
Hu H Y 2000 Applied Nonlinear Dynamics (Beijing: Aviation Industry Press) pp25−30(in Chinese)
[32] Hosea M E, Shampine L F 1996 Appl. Numer. Math. 20 21Google Scholar
[33] Shampine L F, Reichelt M W, Kierzenka J A 1999 SIAM Rev. 41 538Google Scholar
[34] Lai D, Chen G 1998 Math. Comput. Modell. 27 1
-
图 3 定常解的幅频曲线 (a)
${\alpha _1} \!=\! - 0.4$ , 刚度软化; (b)${\alpha _1} \!=\! 0.4$ , 刚度硬化 (圆表示稳定解支, 星号表示不稳定解支)Figure 3. Amplitude-frequency curves of steady-state response: (a)
${\alpha _1} = - 0.4$ , stiffness softening; (b)${\alpha _1} = 0.4$ , stiffness hardening (the circles for stable solution and the asterisks for unstable one).图 4 定常解的相频曲线 (a)
${\alpha _1} \!=\! - 0.4$ , 刚度软化; (b)${\alpha _1} \!= 0.4$ , 刚度硬化(圆表示稳定解支, 星号表示不稳定解支)Figure 4. Phase-frequency curves of steady-state response: (a)
${\alpha _1} = - 0.4$ , stiffness softening; (b)${\alpha _1} = 0.4$ , stiffness hardening (the circles for stable solution and the asterisks for unstable one).图 11 临界激励幅值
${F_2}$ 的解析结果与数值仿真结果对比 (a)${\omega _1} = 3{\omega _2}$ ; (b)${\omega _1} = 1.1$ ; (c)${\omega _2} = 0.3667$ (星号代表解析结果, 圆代表数值仿真结果)Figure 11. Comparisons of analytical results and numerical simulation results of critical excitation amplitude
${F_2}$ : (a)${\omega _1} = 3{\omega _2}$ ; (b)${\omega _1} = 1.1$ ; (c)${\omega _2} = 0.3667$ (the asterisks for analytical results and the circles for numerical simulation results). -
[1] 孟光, 薛中擎 1989 航空动力学报 2 173
Meng G, Xue Z Q 1989 J. Aerosp. Power 2 173
[2] Ertas A, Chew E K 1990 Int. J. Non Linear Mech. 25 241Google Scholar
[3] Pan R, Davies H G 1996 Nonlinear Dyn. 9 349Google Scholar
[4] 刘亚冲 2019 船舶力学 23 135Google Scholar
Liu Y C 2019 J. Ship Mech. 23 135Google Scholar
[5] Huan R H, Zhu W Q, Ma F, Ying Z G 2014 Nonlinear Dyn. 76 765Google Scholar
[6] 宦荣华, 宋亚轻, 朱位秋 2014 浙江大学学报(工学版) 48 321
Huan R H, Song Y Q, Zhu W Q 2014 J. Zhejiang Univ. (Eng. Sci.) 48 321
[7] Hu N Q, Wen X S 2003 J. Sound Vibr. 268 917Google Scholar
[8] 姚海洋, 王海燕, 张之琛, 申晓红 2017 66 124302Google Scholar
Yao H Y, Wang H Y, Zhang Z C, Shen X H 2017 Acta Phys. Sin. 66 124302Google Scholar
[9] 曹保锋, 李鹏, 李小强, 张雪芹, 宁王师, 梁睿, 李欣, 胡淼, 郑毅 2019 68 0805010
Cao B F, Li P, Li X Q, Zhang X Q, Ning W S, Liang R, Li X, Hu M, Zheng Y 2019 Acta Phys. Sin. 68 0805010
[10] Erturk A, Inman D J 2011 J. Sound Vibr. 330 2339Google Scholar
[11] Wang Y L, Yang Z B, Li P Y, Cao D Q, Huang W H, Inman D J 2020 Nano Energy 75 104853Google Scholar
[12] Shen Y J, Yang S P, Xing H J, Gao G S 2012 Commun. Nonlinear Sci. Numer. Simul. 17 3092Google Scholar
[13] Shen Y J, Yang S P, Xing H J, Ma H X 2012 Int. J. Non Linear Mech. 47 975Google Scholar
[14] Agarwal V, Zheng X, Balachandran B 2018 Phys. Lett. A 382 3355Google Scholar
[15] 温少芳, 申永军, 杨绍普 2016 65 094502Google Scholar
Wen S F, Shen Y J, Yang S P 2016 Acta Phys. Sin. 65 094502Google Scholar
[16] 杨晓丽, 徐伟, 孙中奎 2006 55 1678Google Scholar
Yang X L, Xu W, Sun Z K 2006 Acta Phys. Sin. 55 1678Google Scholar
[17] 马少娟, 徐伟, 李伟 2006 55 4013Google Scholar
Ma S J, Xu W, Li W 2006 Acta Phys. Sin. 55 4013Google Scholar
[18] 吴存利, 马少娟, 孙中奎, 方同 2006 55 6253Google Scholar
Wu C L, Ma S J, Sun Z K, Fang T 2006 Acta Phys. Sin. 55 6253Google Scholar
[19] Niu J C, Liu R Y, Shen Y J, Yang S P 2019 Chaos 29 123106Google Scholar
[20] Liu X J, Li H, Jiang J, Tang D F, Yang L X 2016 Nonlinear Dyn. 83 1419Google Scholar
[21] Shen Y J, Wen S F, Li X H, Yang S P, Xing H J 2016 Nonlinear Dyn. 85 1457Google Scholar
[22] Niu J C, Shen Y J, Yang S P, Li S J 2018 J. Vib. Control 24 3744Google Scholar
[23] Hassan A 1994 J. Sound Vibr. 172 513Google Scholar
[24] Van K N, Chien T Q 2016 J. Comput. Nonlinear Dyn. 11 051018Google Scholar
[25] Yang S P, Nayfeh A H, Mook D T 1998 Acta Mech. 131 235Google Scholar
[26] 李航, 申永军, 李向红, 韩彦军, 彭孟菲 2020 力学学报 52 514Google Scholar
Li H, Shen Y J, Li X H, Han Y J, Peng M F 2020 Chin. J. Theor. Appl. Mech. 52 514Google Scholar
[27] Nayfeh A H, Mook D T 2008 Nonlinear oscillations (New York: John Wiley & Sons) pp162–192
[28] Szemplinska-Stupnicka W, Bajkowski J 1986 Int. J. Non Linear Mech. 21 401Google Scholar
[29] Van Dooren R 1988 J. Sound Vibr. 123 327Google Scholar
[30] 毕勤胜, 陈予恕, 吴志强 1998 应用数学和力学 19 113
Bi Q S, Chen Y S, Wu Z Q 1998 Appl. Math. Mech. 19 113
[31] 胡海岩 2000 应用非线性动力学 (北京: 航空工业出版社) 第25−30页
Hu H Y 2000 Applied Nonlinear Dynamics (Beijing: Aviation Industry Press) pp25−30(in Chinese)
[32] Hosea M E, Shampine L F 1996 Appl. Numer. Math. 20 21Google Scholar
[33] Shampine L F, Reichelt M W, Kierzenka J A 1999 SIAM Rev. 41 538Google Scholar
[34] Lai D, Chen G 1998 Math. Comput. Modell. 27 1
Catalog
Metrics
- Abstract views: 6442
- PDF Downloads: 157
- Cited By: 0