-
为解决一类典型工程摆的工作性能参数优选, 抽象该类系统为“受垂直激励和水平约束”的物理单摆模型. 运用多尺度法解析系统的亚谐共振响应, 明确了系统参数对幅值共振带宽、多值性的作用规律. 利用Melnikov函数法, 求解得到系统的同宿轨和Smale意义上混沌的阈值条件. 通过数值法解析系统单参分岔、最大Lyapunov指数、双参分岔及吸引域流形转迁等动力特性, 揭示了这类摆系统的亚谐共振分岔、周期吸引子倍增、周期与混沌吸引子共存等全局特性的运动规律, 进一步明确了相关参数改变对系统运动形态转化、能量分布与演变规律的作用机理, 得到了相关参数对工程系统工作性能的影响和作用机制. 研究结果对工程中该类典型物理系统的工作性能参数调整, 及其对实际工况中系统的减振抑振提供了理论依据.In order to improve the working performance and optimize the working parameters of the typical engineering pendulum of a typical system that it is abstracted as a physical simple pendulum model with vertical excitation and horizontal constraint. The dynamical equation of the system with vertical excitation and horizontal constraint is established by using Lagrange equation. The multiple-scale method is used to analyze the subharmonic response characteristics of the system. The amplitude-frequency response equation and the phase-frequency response equation are obtained through calculation. The effects of the system parameters on the amplitude resonance bandwidth and variability are clarified. According to the singularity theory and the universal unfolding theory, the bifurcation topology structure of the subharmonic resonance of the system is obtained. The Melnikov function is applied to the study of the critical conditions for the chaotic motion of the system. The parameter equation of homoclinic orbit motion is obtained through calculation. The threshold conditions of chaos in the sense of Smale are analyzed by solving the Melnikov function of the homoclinic motion orbit. The dynamic characteristics of the system, including single-parameter bifurcation, maximum Lyapunov exponent, bi-parameter bifurcation, and manifold transition in the attraction basin, are analyzed numerically. The results show that the main path of the system entering into the chaos is an almost period doubling bifurcation. Complex dynamical behaviors such as periodic motion, period doubling bifurcation and chaos are found. The bi-parameter matching areas of the subharmonic resonance bifurcation and chaos of the system are clarified. The results reveal the global characteristics of the system with vertical excitation and horizontal constraint, such as subharmonic resonance bifurcation, periodic attractor multiplication, and the coexistence of periodic and chaotic attractors. The results further clarify the mechanism of the influence of system parameters change on the movement form transformation, energy distribution and evolution law of the system. The mechanism of the influence of relevant parameters on the performance of the engineering system with vertical excitation and horizontal constraint is also obtained. The results of this research provide theoretical bases for adjusting the parameters of working performances of this typical physical system in engineering domain and the vibration reduction and suppression of the system in actual working conditions.
-
Keywords:
- simple pendulum /
- subharmonic resonance /
- bifurcation /
- chaos
[1] Wu Q X, Wang X K, Lin H, Xia M H 2020 Mech. Syst. Signal Process. 144 106968Google Scholar
[2] Ouyang H M, Tian Z, Yu L L, Zhang G M 2020 J. Frankl. Inst. 357 8299Google Scholar
[3] Lin B T, Zhang Q W, Fan F, Shen S Z 2020 Appl. Math. Model. 87 606Google Scholar
[4] Wu S T 2009 J. Sound Vib. 323 1Google Scholar
[5] 王观, 胡华, 伍康, 李刚, 王力军 2016 65 200702Google Scholar
Wang G, Hu H, Wu K, Li G, Wang L J 2016 Acta Phys. Sin. 65 200702Google Scholar
[6] Matthews M R 1989 Res. Sci. Educ. 19 187Google Scholar
[7] Czolczynski K, Perlikowski P, Stefanski A, Kapitaniak T 2009 Physica A 388 5013Google Scholar
[8] Szumiński W, Woźniak D 2020 Commun. Nonlinear Sci. Numer. Simulat. 83 105099Google Scholar
[9] Náprstek J, Fischer C 2013 Comput. Struct. 124 74Google Scholar
[10] Han N, Cao Q J 2017 Int. J. Mech. Sci. 127 91Google Scholar
[11] Amer T S, Bek M A, Abohamer M K 2019 Mech. Res. Commun. 95 23Google Scholar
[12] 方潘, 侯勇俊, 张丽萍, 杜明俊, 张梦媛 2016 65 014501Google Scholar
Fang P, Hou Y J, Zhang L P, Du M J, Zhang M Y 2016 Acta Phys. Sin. 65 014501Google Scholar
[13] Kapitaniak M, Perlikowski P, Kapitaniak T 2013 Commun. Nonlinear Sci. Numer. Simulat. 18 2088Google Scholar
[14] 萧寒, 唐驾时, 梁翠香 2009 58 2989Google Scholar
Xiao H, Tang J S, Liang C X 2009 Acta Phys. Sin. 58 2989Google Scholar
[15] 张利娟, 张华彪, 李欣业 2018 67 244302Google Scholar
Zhang L J, Zhang H B, Li X Y 2018 Acta Phys. Sin. 67 244302Google Scholar
[16] Bek M A, Amer T S, Sirwah M A, Awrejcewicz J, Arab A A 2020 Results Phys. 19 103465Google Scholar
[17] Butikov E I 2015 Commun. Nonlinear Sci. Numer. Simulat. 20 298Google Scholar
[18] Zhou L Q, Liu S S, Chen F Q 2017 Chaos Solit. Fract. 99 270Google Scholar
[19] Franco E, Astolfi A, Baena F R 2018 Mech. Mach. Theory 130 539Google Scholar
[20] Najdecka A, Kapitaniak T, Wiercigroch M 2015 Int. J. Non-Linear Mech. 70 84Google Scholar
[21] Stefanski A, Pikunov D, Balcerzak M, Dabrowski A 2020 Int. J. Mech. Sci. 173 105454Google Scholar
[22] Wijata A, Polczyński K, Awrejcewicz J 2021 Mech. Syst. Signal Process. 150 107229Google Scholar
[23] Kholostova O V 1995 J. Appl. Maths. Mechs. 59 553Google Scholar
[24] Jallouli A, Kacem N, Bouhaddi N. 2017 Commun. Nonlinear Sci. Numer. Simulat. 42 1Google Scholar
[25] Brzeski P, Perlikowski P, Yanchuk S, Kapitaniak T 2012 J. Sound Vib. 331 5347Google Scholar
[26] Witz J A 1995 Ocean Eng. 22 411Google Scholar
[27] Peláez J, Andrés Y N 2005 J. Guid. Control Dynam. 28 611Google Scholar
[28] Li Y S, Yang M M, Sun H X, Liu Z M, Zhang Y 2018 J. Intell. Robot. Syst. 89 485Google Scholar
[29] Zheng Y J, Shen G X, Li Y G, Li M, Liu H M 2014 J. Iron Steel Res. Int. 21 837Google Scholar
[30] Kojima H, Fukatsu K, Trivailo P M 2015 Acta Astronaut. 106 24Google Scholar
[31] Shen G X, Li M 2009 J. Mater. Process. Tech. 209 5002Google Scholar
[32] Nayfeh A H 1983 J. Sound Vib. 88 1Google Scholar
[33] Golubitsky M, Schaeffer D G 1985 Singularities and Groups in Bifurcation Theory (Vol. Ⅰ) (New York: Springer-Verlag) pp131−133
-
-
[1] Wu Q X, Wang X K, Lin H, Xia M H 2020 Mech. Syst. Signal Process. 144 106968Google Scholar
[2] Ouyang H M, Tian Z, Yu L L, Zhang G M 2020 J. Frankl. Inst. 357 8299Google Scholar
[3] Lin B T, Zhang Q W, Fan F, Shen S Z 2020 Appl. Math. Model. 87 606Google Scholar
[4] Wu S T 2009 J. Sound Vib. 323 1Google Scholar
[5] 王观, 胡华, 伍康, 李刚, 王力军 2016 65 200702Google Scholar
Wang G, Hu H, Wu K, Li G, Wang L J 2016 Acta Phys. Sin. 65 200702Google Scholar
[6] Matthews M R 1989 Res. Sci. Educ. 19 187Google Scholar
[7] Czolczynski K, Perlikowski P, Stefanski A, Kapitaniak T 2009 Physica A 388 5013Google Scholar
[8] Szumiński W, Woźniak D 2020 Commun. Nonlinear Sci. Numer. Simulat. 83 105099Google Scholar
[9] Náprstek J, Fischer C 2013 Comput. Struct. 124 74Google Scholar
[10] Han N, Cao Q J 2017 Int. J. Mech. Sci. 127 91Google Scholar
[11] Amer T S, Bek M A, Abohamer M K 2019 Mech. Res. Commun. 95 23Google Scholar
[12] 方潘, 侯勇俊, 张丽萍, 杜明俊, 张梦媛 2016 65 014501Google Scholar
Fang P, Hou Y J, Zhang L P, Du M J, Zhang M Y 2016 Acta Phys. Sin. 65 014501Google Scholar
[13] Kapitaniak M, Perlikowski P, Kapitaniak T 2013 Commun. Nonlinear Sci. Numer. Simulat. 18 2088Google Scholar
[14] 萧寒, 唐驾时, 梁翠香 2009 58 2989Google Scholar
Xiao H, Tang J S, Liang C X 2009 Acta Phys. Sin. 58 2989Google Scholar
[15] 张利娟, 张华彪, 李欣业 2018 67 244302Google Scholar
Zhang L J, Zhang H B, Li X Y 2018 Acta Phys. Sin. 67 244302Google Scholar
[16] Bek M A, Amer T S, Sirwah M A, Awrejcewicz J, Arab A A 2020 Results Phys. 19 103465Google Scholar
[17] Butikov E I 2015 Commun. Nonlinear Sci. Numer. Simulat. 20 298Google Scholar
[18] Zhou L Q, Liu S S, Chen F Q 2017 Chaos Solit. Fract. 99 270Google Scholar
[19] Franco E, Astolfi A, Baena F R 2018 Mech. Mach. Theory 130 539Google Scholar
[20] Najdecka A, Kapitaniak T, Wiercigroch M 2015 Int. J. Non-Linear Mech. 70 84Google Scholar
[21] Stefanski A, Pikunov D, Balcerzak M, Dabrowski A 2020 Int. J. Mech. Sci. 173 105454Google Scholar
[22] Wijata A, Polczyński K, Awrejcewicz J 2021 Mech. Syst. Signal Process. 150 107229Google Scholar
[23] Kholostova O V 1995 J. Appl. Maths. Mechs. 59 553Google Scholar
[24] Jallouli A, Kacem N, Bouhaddi N. 2017 Commun. Nonlinear Sci. Numer. Simulat. 42 1Google Scholar
[25] Brzeski P, Perlikowski P, Yanchuk S, Kapitaniak T 2012 J. Sound Vib. 331 5347Google Scholar
[26] Witz J A 1995 Ocean Eng. 22 411Google Scholar
[27] Peláez J, Andrés Y N 2005 J. Guid. Control Dynam. 28 611Google Scholar
[28] Li Y S, Yang M M, Sun H X, Liu Z M, Zhang Y 2018 J. Intell. Robot. Syst. 89 485Google Scholar
[29] Zheng Y J, Shen G X, Li Y G, Li M, Liu H M 2014 J. Iron Steel Res. Int. 21 837Google Scholar
[30] Kojima H, Fukatsu K, Trivailo P M 2015 Acta Astronaut. 106 24Google Scholar
[31] Shen G X, Li M 2009 J. Mater. Process. Tech. 209 5002Google Scholar
[32] Nayfeh A H 1983 J. Sound Vib. 88 1Google Scholar
[33] Golubitsky M, Schaeffer D G 1985 Singularities and Groups in Bifurcation Theory (Vol. Ⅰ) (New York: Springer-Verlag) pp131−133
计量
- 文章访问数: 6019
- PDF下载量: 142
- 被引次数: 0