Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Subharmonic resonance bifurcation and chaos of simple pendulum system with vertical excitation and horizontal constraint

Zhao Wu Zhang Hong-Bin Sun Chao-Fan Huang Dan Fan Jun-Kai

Citation:

Subharmonic resonance bifurcation and chaos of simple pendulum system with vertical excitation and horizontal constraint

Zhao Wu, Zhang Hong-Bin, Sun Chao-Fan, Huang Dan, Fan Jun-Kai
PDF
HTML
Get Citation
  • In order to improve the working performance and optimize the working parameters of the typical engineering pendulum of a typical system that it is abstracted as a physical simple pendulum model with vertical excitation and horizontal constraint. The dynamical equation of the system with vertical excitation and horizontal constraint is established by using Lagrange equation. The multiple-scale method is used to analyze the subharmonic response characteristics of the system. The amplitude-frequency response equation and the phase-frequency response equation are obtained through calculation. The effects of the system parameters on the amplitude resonance bandwidth and variability are clarified. According to the singularity theory and the universal unfolding theory, the bifurcation topology structure of the subharmonic resonance of the system is obtained. The Melnikov function is applied to the study of the critical conditions for the chaotic motion of the system. The parameter equation of homoclinic orbit motion is obtained through calculation. The threshold conditions of chaos in the sense of Smale are analyzed by solving the Melnikov function of the homoclinic motion orbit. The dynamic characteristics of the system, including single-parameter bifurcation, maximum Lyapunov exponent, bi-parameter bifurcation, and manifold transition in the attraction basin, are analyzed numerically. The results show that the main path of the system entering into the chaos is an almost period doubling bifurcation. Complex dynamical behaviors such as periodic motion, period doubling bifurcation and chaos are found. The bi-parameter matching areas of the subharmonic resonance bifurcation and chaos of the system are clarified. The results reveal the global characteristics of the system with vertical excitation and horizontal constraint, such as subharmonic resonance bifurcation, periodic attractor multiplication, and the coexistence of periodic and chaotic attractors. The results further clarify the mechanism of the influence of system parameters change on the movement form transformation, energy distribution and evolution law of the system. The mechanism of the influence of relevant parameters on the performance of the engineering system with vertical excitation and horizontal constraint is also obtained. The results of this research provide theoretical bases for adjusting the parameters of working performances of this typical physical system in engineering domain and the vibration reduction and suppression of the system in actual working conditions.
      Corresponding author: Zhang Hong-Bin, zhanghongbin2020@163.com
    • Funds: Project supported by the Joint Funds of the National Natural Science Foundation of China (Grant No. U1604140), the Key Science and Technology Program of Henan Province, China (Grant Nos. 172102210269, 192102210052, 212102210108, 212102210004), the Major Achievements Cultivation Project of Henan Province, China (Grant No. NSFRF170503), and the Henan Polytechnic University Innovation Team Foundation, China (Grant No. T2019-5)
    [1]

    Wu Q X, Wang X K, Lin H, Xia M H 2020 Mech. Syst. Signal Process. 144 106968Google Scholar

    [2]

    Ouyang H M, Tian Z, Yu L L, Zhang G M 2020 J. Frankl. Inst. 357 8299Google Scholar

    [3]

    Lin B T, Zhang Q W, Fan F, Shen S Z 2020 Appl. Math. Model. 87 606Google Scholar

    [4]

    Wu S T 2009 J. Sound Vib. 323 1Google Scholar

    [5]

    王观, 胡华, 伍康, 李刚, 王力军 2016 65 200702Google Scholar

    Wang G, Hu H, Wu K, Li G, Wang L J 2016 Acta Phys. Sin. 65 200702Google Scholar

    [6]

    Matthews M R 1989 Res. Sci. Educ. 19 187Google Scholar

    [7]

    Czolczynski K, Perlikowski P, Stefanski A, Kapitaniak T 2009 Physica A 388 5013Google Scholar

    [8]

    Szumiński W, Woźniak D 2020 Commun. Nonlinear Sci. Numer. Simulat. 83 105099Google Scholar

    [9]

    Náprstek J, Fischer C 2013 Comput. Struct. 124 74Google Scholar

    [10]

    Han N, Cao Q J 2017 Int. J. Mech. Sci. 127 91Google Scholar

    [11]

    Amer T S, Bek M A, Abohamer M K 2019 Mech. Res. Commun. 95 23Google Scholar

    [12]

    方潘, 侯勇俊, 张丽萍, 杜明俊, 张梦媛 2016 65 014501Google Scholar

    Fang P, Hou Y J, Zhang L P, Du M J, Zhang M Y 2016 Acta Phys. Sin. 65 014501Google Scholar

    [13]

    Kapitaniak M, Perlikowski P, Kapitaniak T 2013 Commun. Nonlinear Sci. Numer. Simulat. 18 2088Google Scholar

    [14]

    萧寒, 唐驾时, 梁翠香 2009 58 2989Google Scholar

    Xiao H, Tang J S, Liang C X 2009 Acta Phys. Sin. 58 2989Google Scholar

    [15]

    张利娟, 张华彪, 李欣业 2018 67 244302Google Scholar

    Zhang L J, Zhang H B, Li X Y 2018 Acta Phys. Sin. 67 244302Google Scholar

    [16]

    Bek M A, Amer T S, Sirwah M A, Awrejcewicz J, Arab A A 2020 Results Phys. 19 103465Google Scholar

    [17]

    Butikov E I 2015 Commun. Nonlinear Sci. Numer. Simulat. 20 298Google Scholar

    [18]

    Zhou L Q, Liu S S, Chen F Q 2017 Chaos Solit. Fract. 99 270Google Scholar

    [19]

    Franco E, Astolfi A, Baena F R 2018 Mech. Mach. Theory 130 539Google Scholar

    [20]

    Najdecka A, Kapitaniak T, Wiercigroch M 2015 Int. J. Non-Linear Mech. 70 84Google Scholar

    [21]

    Stefanski A, Pikunov D, Balcerzak M, Dabrowski A 2020 Int. J. Mech. Sci. 173 105454Google Scholar

    [22]

    Wijata A, Polczyński K, Awrejcewicz J 2021 Mech. Syst. Signal Process. 150 107229Google Scholar

    [23]

    Kholostova O V 1995 J. Appl. Maths. Mechs. 59 553Google Scholar

    [24]

    Jallouli A, Kacem N, Bouhaddi N. 2017 Commun. Nonlinear Sci. Numer. Simulat. 42 1Google Scholar

    [25]

    Brzeski P, Perlikowski P, Yanchuk S, Kapitaniak T 2012 J. Sound Vib. 331 5347Google Scholar

    [26]

    Witz J A 1995 Ocean Eng. 22 411Google Scholar

    [27]

    Peláez J, Andrés Y N 2005 J. Guid. Control Dynam. 28 611Google Scholar

    [28]

    Li Y S, Yang M M, Sun H X, Liu Z M, Zhang Y 2018 J. Intell. Robot. Syst. 89 485Google Scholar

    [29]

    Zheng Y J, Shen G X, Li Y G, Li M, Liu H M 2014 J. Iron Steel Res. Int. 21 837Google Scholar

    [30]

    Kojima H, Fukatsu K, Trivailo P M 2015 Acta Astronaut. 106 24Google Scholar

    [31]

    Shen G X, Li M 2009 J. Mater. Process. Tech. 209 5002Google Scholar

    [32]

    Nayfeh A H 1983 J. Sound Vib. 88 1Google Scholar

    [33]

    Golubitsky M, Schaeffer D G 1985 Singularities and Groups in Bifurcation Theory (Vol. Ⅰ) (New York: Springer-Verlag) pp131−133

  • 图 1  受垂直激励和水平约束的单摆模型

    Figure 1.  Simple pendulum model with vertical excitation and horizontal constraint.

    图 2  σ变化下改变b的幅频响应曲线

    Figure 2.  Amplitude-frequency response curves with different σ and b.

    图 3  σ变化下改变k33的幅频响应曲线

    Figure 3.  Amplitude-frequency response curves with different σ and k33.

    图 4  σ变化下改变c11的幅频响应曲线

    Figure 4.  Amplitude-frequency response curves with different σ and c11.

    图 5  c11变化下改变σ的幅频响应曲线

    Figure 5.  Amplitude-frequency response curves with different c11 and σ.

    图 6  k33变化下改变σ的幅频响应曲线

    Figure 6.  Amplitude-frequency response curves with different k33 and σ.

    图 7  受垂直激励和水平约束单摆系统1/2次亚谐共振分岔拓扑结构

    Figure 7.  Bifurcation topology of 1/2-order subharmonic resonance of a simple pendulum system with vertical excitation and horizontal constraint.

    图 8  (a)势阱曲线; (b), (c)相轨线及其局部放大图

    Figure 8.  (a) Potential well curve; (b), (c) phase track and its enlarged view.

    图 9  系统混沌运动的参数条件

    Figure 9.  Parameter conditions for chaotic motion of the system

    图 10  单摆系统亚谐共振在ωb = 2时的混沌吸引子

    Figure 10.  Chaotic attractor of simple pendulum system when ωb = 2.

    图 11  摆长l变化下的分岔图

    Figure 11.  Bifurcation diagram with different l.

    图 12  ωb变化下的(a)分岔和(b)最大Lyapunov指数

    Figure 12.  (a) Bifurcation and (b) maximum Lyapunov exponent with different ωb.

    图 13  ωb变化下的(a)−(c)相图和(d)−(f)时间历程图 (a), (d) ωb = 0.5; (b), (e) ωb = 1.02; (c), (f) ωb = 1.8

    Figure 13.  (a)−(c) Phase diagram and (d)−(f) time history diagram with different ωb : (a), (d) ωb = 0.5; (b), (e) ωb = 1.02; (c), (f) ωb = 1.8

    图 14  ωb = 1.8时b变化下的时间历程图 (a) b = 0.28; (b) b = 0.38; (c) b = 0.58

    Figure 14.  Time history diagram when b changes and ωb = 1.8: (a) b = 0.28; (b) b = 0.38; (c) b = 0.58.

    图 15  c11变化下的(a)分岔和(b)最大Lyapunov指数

    Figure 15.  (a) Bifurcation and (b) maximum Lyapunov exponent with different c11.

    图 16  c11变化下的(a)−(c)相图和(d)−(f)时间历程图 (a), (d) c11 = 0.6; (b), (e) c11 = 0.63; (c), (f) c11 = 1.2

    Figure 16.  (a)−(c) Phase diagram and (d)−(f) time history diagram with different c11: (a), (d) c11 = 0.6; (b), (e) c11 = 0.63; (c), (f) c11 = 1.2.

    图 17  g1变化下的(a)分岔和(b)最大Lyapunov指数

    Figure 17.  (a) Bifurcation and (b) maximum Lyapunov exponent with different g1.

    图 18  g1变化下的(a)−(c)相图和(d)−(f)时间历程图 (a), (d) g1 = 0.27; (b), (e) g1 = 0.28; (c), (f) g1 = 0.36

    Figure 18.  (a)−(c) Phase diagram and (d)−(f) time history diagram with different g1: (a), (d) g1 = 0.27; (b), (e) g1 = 0.28; (c), (f) g1 = 0.36.

    图 19  k33变化下的(a)分岔和(b)最大Lyapunov指数

    Figure 19.  (a) Bifurcation and (b) maximum Lyapunov exponent with different k33..

    图 20  k33变化下的(a)−(c)相图和(d)−(f)时间历程图 (a), (d) k33 = 0.6; (b), (e) k33 = 1.2; (c), (f) k33 = 1.4

    Figure 20.  (a)−(c) Phase diagram and (d)−(f) time history diagram with different k33: (a), (d) k33 = 0.6; (b), (e) k33 = 1.2; (c), (f) k33 = 1.4

    图 21  b变化下的(a)分岔和(b)最大Lyapunov指数

    Figure 21.  (a) Bifurcation and (b) maximum Lyapunov exponent with different b.

    图 22  b变化下的(a)−(c)相图和(d)−(f)时间历程图 (a), (d) b = 0.19; (b), (e) b = 0.28; (c), (f) b = 0.36

    Figure 22.  (a)−(c) Phase diagram and (d)−(f) time history diagram with different b: (a), (d) b = 0.19; (b), (e) b = 0.28; (c), (f) b = 0.36

    图 23  b = 0.36时ωb变化下的时间历程图 (a) ωb = 1.3 (b) ωb = 1.5; (c) ωb = 1.7

    Figure 23.  Time history diagram when ωb changes and b = 0.36: (a) ωb = 1.3; (b) ωb = 1.5; (c) ωb = 1.7.

    图 24  单摆非线性系统在双参数域上的运动 (a) ωb-c11; (b) c11-k33; (c) k33-g1; (d) g1-b; (e) b-ωb

    Figure 24.  Motion of a simple pendulum nonlinear system in the bi-parameter domain: (a) ωb-c11; (b) c11-k33; (c) k33-g1; (d) g1-b; (e) b-ωb

    图 25  系统在参数b变化时的吸引子、吸引域 (a) b = 0.11; (b) b = 0.23; (c) b = 0.32; (d) b = 0.35; (e) b = 0.49; (f) b = 0.81

    Figure 25.  Attractor and attraction domain of the system when the parameter b changes: (a) b = 0.11; (b) b = 0.23; (c) b = 0.32; (d) b = 0.35; (e) b = 0.49; (f) b = 0.81.

    Baidu
  • [1]

    Wu Q X, Wang X K, Lin H, Xia M H 2020 Mech. Syst. Signal Process. 144 106968Google Scholar

    [2]

    Ouyang H M, Tian Z, Yu L L, Zhang G M 2020 J. Frankl. Inst. 357 8299Google Scholar

    [3]

    Lin B T, Zhang Q W, Fan F, Shen S Z 2020 Appl. Math. Model. 87 606Google Scholar

    [4]

    Wu S T 2009 J. Sound Vib. 323 1Google Scholar

    [5]

    王观, 胡华, 伍康, 李刚, 王力军 2016 65 200702Google Scholar

    Wang G, Hu H, Wu K, Li G, Wang L J 2016 Acta Phys. Sin. 65 200702Google Scholar

    [6]

    Matthews M R 1989 Res. Sci. Educ. 19 187Google Scholar

    [7]

    Czolczynski K, Perlikowski P, Stefanski A, Kapitaniak T 2009 Physica A 388 5013Google Scholar

    [8]

    Szumiński W, Woźniak D 2020 Commun. Nonlinear Sci. Numer. Simulat. 83 105099Google Scholar

    [9]

    Náprstek J, Fischer C 2013 Comput. Struct. 124 74Google Scholar

    [10]

    Han N, Cao Q J 2017 Int. J. Mech. Sci. 127 91Google Scholar

    [11]

    Amer T S, Bek M A, Abohamer M K 2019 Mech. Res. Commun. 95 23Google Scholar

    [12]

    方潘, 侯勇俊, 张丽萍, 杜明俊, 张梦媛 2016 65 014501Google Scholar

    Fang P, Hou Y J, Zhang L P, Du M J, Zhang M Y 2016 Acta Phys. Sin. 65 014501Google Scholar

    [13]

    Kapitaniak M, Perlikowski P, Kapitaniak T 2013 Commun. Nonlinear Sci. Numer. Simulat. 18 2088Google Scholar

    [14]

    萧寒, 唐驾时, 梁翠香 2009 58 2989Google Scholar

    Xiao H, Tang J S, Liang C X 2009 Acta Phys. Sin. 58 2989Google Scholar

    [15]

    张利娟, 张华彪, 李欣业 2018 67 244302Google Scholar

    Zhang L J, Zhang H B, Li X Y 2018 Acta Phys. Sin. 67 244302Google Scholar

    [16]

    Bek M A, Amer T S, Sirwah M A, Awrejcewicz J, Arab A A 2020 Results Phys. 19 103465Google Scholar

    [17]

    Butikov E I 2015 Commun. Nonlinear Sci. Numer. Simulat. 20 298Google Scholar

    [18]

    Zhou L Q, Liu S S, Chen F Q 2017 Chaos Solit. Fract. 99 270Google Scholar

    [19]

    Franco E, Astolfi A, Baena F R 2018 Mech. Mach. Theory 130 539Google Scholar

    [20]

    Najdecka A, Kapitaniak T, Wiercigroch M 2015 Int. J. Non-Linear Mech. 70 84Google Scholar

    [21]

    Stefanski A, Pikunov D, Balcerzak M, Dabrowski A 2020 Int. J. Mech. Sci. 173 105454Google Scholar

    [22]

    Wijata A, Polczyński K, Awrejcewicz J 2021 Mech. Syst. Signal Process. 150 107229Google Scholar

    [23]

    Kholostova O V 1995 J. Appl. Maths. Mechs. 59 553Google Scholar

    [24]

    Jallouli A, Kacem N, Bouhaddi N. 2017 Commun. Nonlinear Sci. Numer. Simulat. 42 1Google Scholar

    [25]

    Brzeski P, Perlikowski P, Yanchuk S, Kapitaniak T 2012 J. Sound Vib. 331 5347Google Scholar

    [26]

    Witz J A 1995 Ocean Eng. 22 411Google Scholar

    [27]

    Peláez J, Andrés Y N 2005 J. Guid. Control Dynam. 28 611Google Scholar

    [28]

    Li Y S, Yang M M, Sun H X, Liu Z M, Zhang Y 2018 J. Intell. Robot. Syst. 89 485Google Scholar

    [29]

    Zheng Y J, Shen G X, Li Y G, Li M, Liu H M 2014 J. Iron Steel Res. Int. 21 837Google Scholar

    [30]

    Kojima H, Fukatsu K, Trivailo P M 2015 Acta Astronaut. 106 24Google Scholar

    [31]

    Shen G X, Li M 2009 J. Mater. Process. Tech. 209 5002Google Scholar

    [32]

    Nayfeh A H 1983 J. Sound Vib. 88 1Google Scholar

    [33]

    Golubitsky M, Schaeffer D G 1985 Singularities and Groups in Bifurcation Theory (Vol. Ⅰ) (New York: Springer-Verlag) pp131−133

  • [1] Liu Hong-Chen, Su Zhen-Xia. Study on nonlinear phenomena in dual buck full-bridge inverter. Acta Physica Sinica, 2014, 63(1): 010505. doi: 10.7498/aps.63.010505
    [2] Wang Bin, Xue Jian-Yi, He Hao-Yan, Zhu De-Lan. Analysis on a class of double-wing chaotic system and its control via linear matrix inequality. Acta Physica Sinica, 2014, 63(21): 210502. doi: 10.7498/aps.63.210502
    [3] Liu Hong-Chen, Li Fei, Yang Shuang. Study on nonlinear phenomena in single phase H bridge inverter based on the periodic spread spectrum. Acta Physica Sinica, 2013, 62(11): 110504. doi: 10.7498/aps.62.110504
    [4] Zhang Fang-Ying, Yang Ru, Long Xiao-Li, Xie Chen-Yue, Chen Hong. Mechanism of instability behaviors and stabilization on V2 controlled buck converter. Acta Physica Sinica, 2013, 62(21): 218404. doi: 10.7498/aps.62.218404
    [5] Ding Hu, Yan Qiao-Yun, Chen Li-Qun. Chaotic dynamics in the forced nonlinear vibration of an axially accelerating viscoelastic beam. Acta Physica Sinica, 2013, 62(20): 200502. doi: 10.7498/aps.62.200502
    [6] Meng Zong, Fu Li-Yuan, Song Ming-Hou. Bifurcation of a kind of nonlinear-relative rotational system with combined harmonic excitation. Acta Physica Sinica, 2013, 62(5): 054501. doi: 10.7498/aps.62.054501
    [7] Liu Hong-Chen, Wang Yun, Su Zhen-Xia. Bifurcation phenomena in single-phase three-level inverters. Acta Physica Sinica, 2013, 62(24): 240506. doi: 10.7498/aps.62.240506
    [8] Hu Wen, Zhao Guang-Hao, Zhang Gong, Zhang Jing-Qiao, Liu Xian-Long. Stabilities and bifurcations of sine dynamic equations on time scale. Acta Physica Sinica, 2012, 61(17): 170505. doi: 10.7498/aps.61.170505
    [9] Li Hai-Bin, Wang Bo-Hua, Zhang Zhi-Qiang, Liu Shuang, Li Yan-Shu. Combination resonance bifurcations and chaos of some nonlinear relative rotation system. Acta Physica Sinica, 2012, 61(9): 094501. doi: 10.7498/aps.61.094501
    [10] Gu Hua-Guang, Zhu Zhou, Jia Bing. Dynamics of a novel chaotic neural firing pattern discovered in experiment and simulated in mathematical model. Acta Physica Sinica, 2011, 60(10): 100505. doi: 10.7498/aps.60.100505
    [11] Chen Zhang-Yao, Bi Qin-Sheng. Bifurcations and chaos of coupled Jerk systems. Acta Physica Sinica, 2010, 59(11): 7669-7678. doi: 10.7498/aps.59.7669
    [12] Zhang Xiao-Fang, Chen Zhang-Yao, Bi Qin-Sheng. Evolution from regular movement patterns to chaotic attractors in a nonlinear electrical circuit. Acta Physica Sinica, 2010, 59(5): 3057-3065. doi: 10.7498/aps.59.3057
    [13] Zhang Xiao-Fang, Chen Zhang-Yao, Bi Qin-Sheng. Complicated oscillations in coupled electrical circuits. Acta Physica Sinica, 2009, 58(5): 2963-2970. doi: 10.7498/aps.58.2963
    [14] Zou Jian-Long, Ma Xi-Kui. A class of nonlinear phenomena resulting from saturation. Acta Physica Sinica, 2008, 57(2): 720-725. doi: 10.7498/aps.57.720
    [15] Yu Wan-Bo, Wei Xiao-Peng. The bifurcation diagram of a wavelet function. Acta Physica Sinica, 2006, 55(8): 3969-3973. doi: 10.7498/aps.55.3969
    [16] Zhang Wei, Zhou Shu-Hua, Ren Yong, Shan Xiu-Ming. Bifurcation analysis and control in Turbo decoding algorithm. Acta Physica Sinica, 2006, 55(2): 622-627. doi: 10.7498/aps.55.622
    [17] Ma Xi-Kui, Yang Mei, Zou Jian-Long, Wang Ling-Tao. Study of complex behavior in a time-delayed van der Pol’s electromagnetic system (Ⅰ)——The phenomena of bifurcations and chaos. Acta Physica Sinica, 2006, 55(11): 5648-5656. doi: 10.7498/aps.55.5648
    [18] Li Ming, Ma Xi-Kui, Dai Dong, Zhang Hao. Analysis of bifurcation and chaos in a class of piecewise smooth systems based on symbolic sequence. Acta Physica Sinica, 2005, 54(3): 1084-1091. doi: 10.7498/aps.54.1084
    [19] Luo Xiao-Shu, Wang Bing-Hong, Guanrong Chen, Quan Hong-Jun, Fang Jin-Qing, Zou Yan-Li, Jiang Pin-Qun. Research on bifurcation behaviour and chaos control in DC-DC buck converter. Acta Physica Sinica, 2003, 52(1): 12-17. doi: 10.7498/aps.52.12
    [20] Hao Jian-Hong, Ding Wu. Limit cycle oscillating and chaos of the radiation field in a traveling wave tube amplifier. Acta Physica Sinica, 2003, 52(4): 906-910. doi: 10.7498/aps.52.906
Metrics
  • Abstract views:  6020
  • PDF Downloads:  142
  • Cited By: 0
Publishing process
  • Received Date:  19 May 2021
  • Accepted Date:  31 July 2021
  • Available Online:  30 August 2021
  • Published Online:  20 December 2021

/

返回文章
返回
Baidu
map