搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Duffing系统随机相位抑制混沌与随机共振并存现象的机理研究

李爽 李倩 李佼瑞

引用本文:
Citation:

Duffing系统随机相位抑制混沌与随机共振并存现象的机理研究

李爽, 李倩, 李佼瑞

Mechanism for the coexistence phenomenon of random phase suppressing chaos and stochastic resonance in Duffing system

Li Shuang, Li Qian, Li Jiao-Rui
PDF
导出引用
  • 针对随机相位作用的Duffing混沌系统, 研究了随机相位强度变化时系统混沌动力学的演化行为及伴随的随机共振现象. 结合Lyapunov指数、庞加莱截面、相图、时间历程图、功率谱等工具, 发现当噪声强度增大时, 系统存在从混沌状态转化为有序状态的过程, 即存在噪声抑制混沌的现象, 且在这一过程中, 系统亦存在随机共振现象, 而且随机共振曲线上最优的噪声强度恰为噪声抑制混沌的参数临界点. 通过含随机相位周期力的平均效应分析并结合系统的分岔图, 探讨了噪声对混沌运动演化的作用机理, 解释了在此过程中随机共振的形成机理, 论证了噪声抑制混沌与随机共振的相互关系.
    Noise, which is ubiquitous in real systems, has been the subject of various and extensive studies in nonlinear dynamical systems. In general, noise is regarded as an obstacle. However, counterintuitive effects of noise on nonlinear systems have recently been recognized, such as noise suppressing chaos and stochastic resonance. Although the noise suppressing chaos and stochastic resonance have been studied extensively, little is reported about their relation under coexistent condition. In this paper by using Lyapunov exponent, Poincaré section, time history and power spectrum, the effect of random phase on chaotic Duffing system is investigated. It is found that as the intensity of random phase increases the chaotic behavior is suppressed and the power response amplitude passes through a maximum at an optimal noise intensity, which implies that the coexistence phenomenon of noise suppressing chaos and stochastic resonance occurs. Furthermore, an interesting phenomenon is that the optimal noise intensity at the SR curve is just the critical point from chaos to non-chaos. The average effect analysis of harmonic excitation with random phase and the system’s bifurcation diagram shows that the increasing of random phase intensity is in general equivalent to the decreasing of harmonic excitation amplitude of the original deterministic system. So there exists the critical noise intensity where the chaotic motion of large range disintegrates and non-chaotic motion of small scope appears, which implies the enhancing of the regularity of system motion and the increasing of the response amplitude at the input signal frequency. After that, the excess noise will not change the stability of the system any more, but will increase the degree of random fluctuation near the stable motion, resulting in the decreasing of the response amplitude. Therefore, the formation of stochastic resonance is due to the dynamical mechanism of random phase suppressing chaos.
    • 基金项目: 国家自然科学基金(批准号: 11202155)、陕西省教育厅基金(批准号:2013JK0595)和陕西省自然科学基金(批准号: 2014JQ9372)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11202155), the Education Department Foundation of Shaanxi, China (Grant No. 2013JK0595), and the Natural Science Foundation of Shaanxi, China (Grant No. 2014JQ9372).
    [1]

    Matsumoto K, Tsuda I 1983 J. Stat. Phys. 31 87

    [2]

    Ramesh M, Narayanan S 1999 Chaos, Soliton. Fract. 10 1473

    [3]

    Yang X L, Xu W 2009 Acta Phys. Sin. 58 3722 (in Chinese) [杨晓丽, 徐伟 2009 58 3722]

    [4]

    Wei J G, Leng G 1997 Appl. Math. Comput. 88 77

    [5]

    Yoshimoto M, Shirahama H, Kurosawa S 2008 J. Chem. Phys. 129 014508

    [6]

    Lei Y M, Xu W, Xu Y, Fang T 2004 Chaos, Soliton. Fract. 21 1175

    [7]

    Xu Y, Mahmoud G M, Xu W, Lei Y M 2005 Chaos, Soliton. Fract. 23 265

    [8]

    Li S, Xu W, Li R H 2006 Acta Phys. Sin. 55 1049 (in Chinese) [李爽, 徐伟, 李瑞红 2006 55 1049]

    [9]

    Gu Y F, Xiao J 2014 Acta Phys. Sin. 63 160506 (in Chinese) [古元凤, 肖剑 2014 63 160506]

    [10]

    Gammaitoni L, Hänggi P, Jung P, Marchesoni F 1998 Rev. Mod. Phys. 70 223

    [11]

    Zhang G J, Xu J X 2005 Chaos, Soliton. Fract. 27 1056

    [12]

    Jngling T, Benner H, Stemler T, Just W 2008 Phys. Rev. E 77 036216

    [13]

    Arathi S, Rajasekar S 2014 Commun. Nonlinear Sci. Numer. Simulat. 19 4049

    [14]

    Lu K, Wang F Z, Zhang G L, Fu W H 2013 Chin. Phys. B 22 120202

    [15]

    Zhang L Y, Jin G X, Cao L, Wang Z Y 2012 Chin. Phys. B 21 120502

    [16]

    Wang K K, Liu X B 2014 Chin. Phys. B 23 010502

    [17]

    Yamazaki H, Yamada T, Kai S 1998 Phys. Rev. Lett. 81 4112

    [18]

    Wolf A, Swift J B, Swinney H L, Vastano J A 1985 Physica D 16 285

    [19]

    Qian M, Zhang X J 2001 Phys. Rev. E 65 011101

    [20]

    Zhang X J 2004 J. Phys. A: Math. Gen. 37 7473

  • [1]

    Matsumoto K, Tsuda I 1983 J. Stat. Phys. 31 87

    [2]

    Ramesh M, Narayanan S 1999 Chaos, Soliton. Fract. 10 1473

    [3]

    Yang X L, Xu W 2009 Acta Phys. Sin. 58 3722 (in Chinese) [杨晓丽, 徐伟 2009 58 3722]

    [4]

    Wei J G, Leng G 1997 Appl. Math. Comput. 88 77

    [5]

    Yoshimoto M, Shirahama H, Kurosawa S 2008 J. Chem. Phys. 129 014508

    [6]

    Lei Y M, Xu W, Xu Y, Fang T 2004 Chaos, Soliton. Fract. 21 1175

    [7]

    Xu Y, Mahmoud G M, Xu W, Lei Y M 2005 Chaos, Soliton. Fract. 23 265

    [8]

    Li S, Xu W, Li R H 2006 Acta Phys. Sin. 55 1049 (in Chinese) [李爽, 徐伟, 李瑞红 2006 55 1049]

    [9]

    Gu Y F, Xiao J 2014 Acta Phys. Sin. 63 160506 (in Chinese) [古元凤, 肖剑 2014 63 160506]

    [10]

    Gammaitoni L, Hänggi P, Jung P, Marchesoni F 1998 Rev. Mod. Phys. 70 223

    [11]

    Zhang G J, Xu J X 2005 Chaos, Soliton. Fract. 27 1056

    [12]

    Jngling T, Benner H, Stemler T, Just W 2008 Phys. Rev. E 77 036216

    [13]

    Arathi S, Rajasekar S 2014 Commun. Nonlinear Sci. Numer. Simulat. 19 4049

    [14]

    Lu K, Wang F Z, Zhang G L, Fu W H 2013 Chin. Phys. B 22 120202

    [15]

    Zhang L Y, Jin G X, Cao L, Wang Z Y 2012 Chin. Phys. B 21 120502

    [16]

    Wang K K, Liu X B 2014 Chin. Phys. B 23 010502

    [17]

    Yamazaki H, Yamada T, Kai S 1998 Phys. Rev. Lett. 81 4112

    [18]

    Wolf A, Swift J B, Swinney H L, Vastano J A 1985 Physica D 16 285

    [19]

    Qian M, Zhang X J 2001 Phys. Rev. E 65 011101

    [20]

    Zhang X J 2004 J. Phys. A: Math. Gen. 37 7473

  • [1] 许子非, 缪维跑, 李春, 金江涛, 李蜀军. 流场非线性特征提取与混沌分析.  , 2020, 69(24): 249501. doi: 10.7498/aps.69.20200625
    [2] 古元凤, 肖剑. Willis环脑动脉瘤系统的混沌分析及随机相位控制.  , 2014, 63(16): 160506. doi: 10.7498/aps.63.160506
    [3] 王光义, 袁方. 级联混沌及其动力学特性研究.  , 2013, 62(2): 020506. doi: 10.7498/aps.62.020506
    [4] 高仕龙, 钟苏川, 韦鹍, 马洪. 基于混沌和随机共振的微弱信号检测.  , 2012, 61(18): 180501. doi: 10.7498/aps.61.180501
    [5] 牛超, 李夕海, 刘代志. 地球变化磁场Z分量的混沌动力学特性分析.  , 2010, 59(5): 3077-3087. doi: 10.7498/aps.59.3077
    [6] 许喆, 刘崇新, 杨韬. 一种新型混沌系统的分析及电路实现.  , 2010, 59(1): 131-139. doi: 10.7498/aps.59.131
    [7] 王晓雷, 李智磊, 翟宏琛, 王明伟. Fourier频率域随机谱隐秘信息加载与增量补偿系统.  , 2010, 59(10): 6994-7001. doi: 10.7498/aps.59.6994
    [8] 张晓丹, 刘翔, 赵品栋. 一类延迟混沌系统沿主轴方向上Lyapunov指数的计算方法.  , 2009, 58(7): 4415-4420. doi: 10.7498/aps.58.4415
    [9] 张勇, 关伟. 基于最大Lyapunov指数的多变量混沌时间序列预测.  , 2009, 58(2): 756-763. doi: 10.7498/aps.58.756
    [10] 于思瑶, 郭树旭, 郜峰利. 半导体激光器低频噪声的Lyapunov指数计算和混沌状态判定.  , 2009, 58(8): 5214-5217. doi: 10.7498/aps.58.5214
    [11] 刘金海, 张化光, 冯 健. 输油管道压力时间序列混沌特性研究.  , 2008, 57(11): 6868-6877. doi: 10.7498/aps.57.6868
    [12] 冷永刚, 王太勇, 郭 焱, 吴振勇. 双稳随机共振参数特性的研究.  , 2007, 56(1): 30-35. doi: 10.7498/aps.56.30
    [13] 彭建华, 于洪洁. 神经系统中随机和混沌感知信号的联想记忆与分割.  , 2007, 56(8): 4353-4360. doi: 10.7498/aps.56.4353
    [14] 马 军, 靳伍银, 李延龙, 陈 勇. 随机相位扰动抑制激发介质中漂移的螺旋波.  , 2007, 56(4): 2456-2465. doi: 10.7498/aps.56.2456
    [15] 李 爽, 徐 伟, 李瑞红. 利用随机相位实现Duffing系统的混沌控制.  , 2006, 55(3): 1049-1054. doi: 10.7498/aps.55.1049
    [16] 冷永刚, 王太勇, 郭 焱, 汪文津, 胡世广. 级联双稳系统的随机共振特性.  , 2005, 54(3): 1118-1125. doi: 10.7498/aps.54.1118
    [17] 邵元智, 钟伟荣, 林光明, 李坚灿. 随机外磁场作用下Ising自旋体系的随机共振.  , 2004, 53(9): 3157-3164. doi: 10.7498/aps.53.3157
    [18] 盛利元, 孙克辉, 李传兵. 基于切延迟的椭圆反射腔离散混沌系统及其性能研究.  , 2004, 53(9): 2871-2876. doi: 10.7498/aps.53.2871
    [19] 刘福民, 翟宏琛, 杨晓苹. 基于相息图迭代的随机相位加密.  , 2003, 52(10): 2462-2465. doi: 10.7498/aps.52.2462
    [20] 李国辉, 周世平, 徐得名, 赖建文. 间隙线性反馈控制混沌.  , 2000, 49(11): 2123-2128. doi: 10.7498/aps.49.2123
计量
  • 文章访问数:  6772
  • PDF下载量:  445
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-07-13
  • 修回日期:  2014-12-24
  • 刊出日期:  2015-05-05

/

返回文章
返回
Baidu
map