Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Study on the electronic structure and photocatalytic properties of a novel monolayer TiO2

Xiong Zi-Qian Zhang Peng-Cheng Kang Wen-Bin Fang Wen-Yu

Citation:

Study on the electronic structure and photocatalytic properties of a novel monolayer TiO2

Xiong Zi-Qian, Zhang Peng-Cheng, Kang Wen-Bin, Fang Wen-Yu
科大讯飞翻译 (iFLYTEK Translation)
PDF
HTML
Get Citation
  • By means of state-of-the-art density functional theory (DFT) computations, We designed a new two-dimensional material TiO2. We further investigated the stability, electronic structure, carrier mobility, and optical properties of monolayer TiO2. Our results show that monolayer TiO2 has good kinetic, thermodynamic and mechanical stability and can exist stably at room temperature. The results were demonstrated using the binding energy, phonon spectrum, molecular dynamics simulation, and elastic constant calculation. The band structure indicates that the monolayer TiO2 is an indirect bandgap semiconductor with energy gaps of 1.19 eV (GGA+PBE) and 2.76 eV (HSE06), respectively. The results of state density show that the Ti-3d state electrons constitute the top of the valence band and Ti-4s state electrons constitute the bottom of the conduction band. The electron states of O atoms contribute very little near the Fermi energy level and are mainly distributed in the deep energy level. In addition, the carrier mobility of monolayer TiO2 is smaller than monolayer MoS2, and the electron and hole mobility can reach 31.09 cm2·V–1·s–1 and 36.29 cm2·V–1·s–1, respectively. Due to the anisotropy of hole mobility and electron mobility, the composite rate of electrons and holes is relatively low. This ensures longer service life and better photocatalytic activity of monolayer TiO2. Furthermore, under the condition of uniaxial strain and biaxial strain, the energy gap of monolayer TiO2 has a clear response. The energy gap is more sensitive to biaxial strain than uniaxial strain, indicating that monolayer TiO2 can be applied to various semiconductor devices. The band-edge potential and optical properties of semiconductors indicate that two-dimensional TiO2 is capable of photo-splitting water production, H2 at –5~2% single/biaxial strain, and O2, H2O2, O3, etc. at –5~5% single/biaxial strain. Moreover, the monolayer TiO2 has a high absorption coefficient for visible and ultraviolet light. In conclusion, the monolayer TiO2 has a potential application prospect in the field of optoelectronic devices and photocatalytic materials in the future.
      Corresponding author: Kang Wen-Bin, wbkang@hbmu.edu.cn ; Fang Wen-Yu, jzfangwenyu@163.com
    [1]

    Hashimoto A, Suenaga K, Gloter A, Urita K, Iijima S 2004 Nature 430 870Google Scholar

    [2]

    Liu L, Zhang J, Zhao J, Liu F 2012 Nanoscale 4 5910Google Scholar

    [3]

    Kvashnin D G, Bellucci S, Chernozatonskii L A 2015 Phys. Chem. Chem. Phys. 17 4354Google Scholar

    [4]

    Liu Y, Duan X, Huang Y, Duan X 2018 Chem. Soc. Rev. 47 6388Google Scholar

    [5]

    Gupta S, Kutana A, Yakobson B I 2018 J. Phys. Chem. Lett. 9 2757Google Scholar

    [6]

    Yuan J, Yu N, Xue K, Miao X 2017 Appl. Surf. Sci. 409 85Google Scholar

    [7]

    Lee C, Wei X, Kysar J W, Hone J 2008 Science 321 385Google Scholar

    [8]

    Wang H, Chan T L, Xie Z 2018 Chem. Commun. (Camb) 54 385Google Scholar

    [9]

    Hartman T, Sofer Z 2019 ACS Nano 13 8566Google Scholar

    [10]

    Li P 2019 Phys. Chem. Chem. Phys. 21 11150Google Scholar

    [11]

    Li L, Yang J 2017 Nanotechnology 28 475701Google Scholar

    [12]

    Yuan J, Xie Q, Yu N, Wang J 2017 Appl. Surf. Sci. 394 625Google Scholar

    [13]

    Zhang S, Yan Z, Li Y, Chen Z, Zeng H 2015 Angew. Chem. Int. Ed. Engl. 54 3112Google Scholar

    [14]

    Zhang D, Xiong Y, Cheng J, Chai J, Liu T, Ba X, Ullah S, Zheng G, Yan M, Cao M S 2020 Sci. Bull. 65 138Google Scholar

    [15]

    Cao M S, Shu J C, Wang X X, Wang X, Zhang M, Yang H J, Fang X Y, Yuan J 2019 Ann. Phys.-Berlin 531 1800390Google Scholar

    [16]

    Cao M S, Wang X X, Zhang M, Shu J C, Cao W Q, Yang H J, Fang X Y, Yuan J 2019 Adv. Funct. Mater. 29 1807398Google Scholar

    [17]

    Matta S K, Zhang C, Jiao Y, O'mullane A, Du A 2018 Nanoscale 10 6369Google Scholar

    [18]

    Zhu Y L, Yuan J H, Song Y Q, Wang S, Xue K H, Xu M, Cheng X M, Miao X S 2019 J. Mater. Sci. 54 11485Google Scholar

    [19]

    Sun Y, Cheng H, Gao S, Sun Z, Liu Q, Liu Q, Lei F, Yao T, He J, Wei S, Xie Y 2012 Angew. Chem. Int. Ed. Engl. 51 8727Google Scholar

    [20]

    方文玉, 张鹏程, 赵军, 康文斌 2020 69 056301Google Scholar

    Fang W Y, Zhang P C, Zhao J, Kang W B 2020 Acta Phys. Sin. 69 056301Google Scholar

    [21]

    Chen Y, Wang L, Wang W, Cao M S 2017 Appl. Catal., B Environ. 209 110Google Scholar

    [22]

    Zhang Y, Kuwahara Y, Mori K, Yamashita H 2019 Chem. Asian J. 14 278Google Scholar

    [23]

    Liang Z, Sun B, Xu X, Cui H, Tian J 2019 Nanoscale 11 12266Google Scholar

    [24]

    Zeng H, Cui X 2015 Chem. Soc. Rev. 44 2629Google Scholar

    [25]

    Guo Z, Zhou J, Zhu L, Sun Z 2016 J. Mater. Chem. A 4 11446Google Scholar

    [26]

    Zhuang H L, Hennig R G 2013 Chem. Mater. 25 3232Google Scholar

    [27]

    Zhang X, Zhao X, Wu D, Jing Y, Zhou Z 2016 Adv. Sci. 3 1600062Google Scholar

    [28]

    Lacerda A M, Larrosa I, Dunn S 2015 Nanoscale 7 12331Google Scholar

    [29]

    Ishida Y, Motokane Y, Tokunaga T, Yonezawa T 2015 Phys. Chem. Chem. Phys. 17 24556Google Scholar

    [30]

    Yoshida T, Niimi S, Yamamoto M, Nomoto T, Yagi S 2015 J. Colloid Interface Sci. 447 278Google Scholar

    [31]

    Liu X, Chen Z, Cao M S 2019 ACS Appl. Energy Mater. 2 5960Google Scholar

    [32]

    Yang J, Jiang Y L, Li L J, Muhire E, Gao M Z 2016 Nanoscale 8 8170Google Scholar

    [33]

    Song S S, Xia B Y, Chen J, Yang J, Shen X, Fan S J, Guo M L, Sun Y M, Zhang X D 2014 RSC Adv. 4 42598Google Scholar

    [34]

    Liu X, Chen Z, Li W, Cao M S 2017 J. Phys. Chem. C 121 20605Google Scholar

    [35]

    Song X F, Hu L F, Li D H, Chen L, Sun Q Q, Zhou P, Zhang D W 2015 Sci Rep 5 15989Google Scholar

    [36]

    Tao J, Luttrell T, Batzill M 2011 Nat. Chem. 3 296Google Scholar

    [37]

    Xie Q, Yuan J, Yu N, Wang L, Wang J 2017 Comput. Mater. Sci. 135 160Google Scholar

    [38]

    Qiu G, Xiao Q, Hu Y, Qin W, Wang D 2004 J. Colloid Interface Sci. 270 127Google Scholar

    [39]

    Yuan J H, Song Y Q, Chen Q, Xue K H, Miao X S 2019 Appl. Surf. Sci. 469 456Google Scholar

    [40]

    Castellanos-Gomez A, Poot M, Steele G A, Van Der Zant H S, Agrait N, Rubio-Bollinger G 2012 Adv. Mater. 24 772Google Scholar

    [41]

    Yuan J, Yu N, Xue K, Miao X 2017 RSC Adv. 7 8654Google Scholar

    [42]

    Song Y Q, Yuan J H, Li L H, Xu M, Wang J F, Xue K H, Miao X S 2019 Nanoscale 11 1131Google Scholar

    [43]

    Xu L C, Du A, Kou L 2016 Phys. Chem. Chem. Phys. 18 27284Google Scholar

    [44]

    Peng R, Ma Y, He Z, Huang B, Kou L, Dai Y 2019 Nano Lett. 19 1227Google Scholar

    [45]

    Li P, You Z, Haugstad G, Cui T 2011 Appl. Phys. Lett. 98 253105Google Scholar

    [46]

    Wang Y, Ma R, Hu K, Kim S, Fang G, Shao Z, Tsukruk V V 2016 ACS Appl. Mater. Interfaces 8 24962Google Scholar

    [47]

    Li Y, Yu C, Gan Y, Kong Y, Jiang P, Zou D F, Li P, Yu X F, Wu R, Zhao H, Gao C F, Li J 2019 Nanotechnology 30 335703Google Scholar

    [48]

    Liu F, Ming P, Li J 2007 Phys. Rev. B 76 064120Google Scholar

    [49]

    Kudin K N, Scuseria G E, Yakobson B I 2001 Phys. Rev. B 64 235406Google Scholar

    [50]

    Kang J, Sahin H, Peeters F M 2015 Phys. Chem. Chem. Phys. 17 27742Google Scholar

    [51]

    Zhao J, Li Y, Ma J 2016 Nanoscale 8 9657Google Scholar

    [52]

    Yuan J, Yu N, Wang J, Xue K-H, Miao X 2018 Appl. Surf. Sci. 436 919Google Scholar

    [53]

    El Mragui A, Logvina Y, Pinto Da Silva L, Zegaoui O, Esteves Da Silva J C G 2019 Materials 1 2Google Scholar

    [54]

    An X, Hu C, Liu H, Qu J 2018 Langmuir 34 1883Google Scholar

    [55]

    Luican-Mayer A, Zhang Y, Dilullo A, Li Y, Fisher B, Ulloa S E, Hla S W 2019 Nanoscale 11 22351Google Scholar

    [56]

    Yu W, Zhang J, Peng T 2016 Appl. Catal., B Environ. 181 220Google Scholar

    [57]

    Zhong L, Chen X, Qi J 2017 Phys. Chem. Chem. Phys. 19 15388Google Scholar

    [58]

    Hua C, Sheng F, Hu Q, Xu Z A, Lu Y, Zheng Y 2018 J. Phys. Chem. Lett. 9 6695Google Scholar

    [59]

    Sarker H P, Rao P M, Huda M N 2019 ChemPhysChem 20 773Google Scholar

    [60]

    Fang W Y, Li P A, Yuan J H, Xue K H, Wang J F 2019 J. Electron. Mater. 49 959Google Scholar

    [61]

    Liu X, Wang Y, Li F, Li Y 2016 Phys. Chem. Chem. Phys. 18 14638Google Scholar

    [62]

    Xiao J, Long M, Li M, Li X, Xu H, Chan K 2015 Phys. Chem. Chem. Phys. 17 6865Google Scholar

    [63]

    Zhang J, Wageh S, Al-Ghamdi A, Yu J 2016 Appl. Catal., B Environ. 192 101Google Scholar

    [64]

    Mogulkoc A, Mogulkoc Y, Kecik D, Durgun E 2018 Phys. Chem. Chem. Phys. 20 21043Google Scholar

  • 图 1  二维TiO2的晶体结构 (a) 俯视图; (b) 侧视图; (c) K点路径

    Figure 1.  Crystal structure of monolayer TiO2 (a) top view; (b) side view; (c) K point path.

    图 2  二维TiO2的声子谱

    Figure 2.  Phonon spectrum of monolayer TiO2.

    图 3  二维TiO2的分子动力学模拟

    Figure 3.  Molecular dynamics simulation of monolayer TiO2.

    图 4  杨氏模量(左图/蓝色)和泊松比(右图/红色)极坐标图, $\theta $为相对于a轴方向的夹角

    Figure 4.  Polar coordinates for Young's modulus (left/blue line) and Poisson's ratio (right/red line) $\theta $ is the angle with respect to the a-direction.

    图 5  能带图(左)和分波态密度图(右) (a) 单层P-6M2 TiO2; (b) 单层金红石TiO2; (c) 单层锐钛矿TiO2

    Figure 5.  Energy band structure (left) and density of states (right) of (a) monolayer P-6M2 TiO2, (b) monolayer rutile TiO2, (c) monolayer anatase TiO2.

    图 6  二维TiO2的差分电荷密度图

    Figure 6.  The differential charge density of monolayer TiO2.

    图 7  (a) 二维TiO2沿a/b方向的总能量与应变量$\Delta l/l$的关系, 采用二次数据拟合二维结构的平面刚度, 黑色和红色曲线表示沿ab方向的面内刚度; (b), (c)单层TiO2的VBM和CBM随应变量相对真空能级的变化, 采取线性拟合计算形变势

    Figure 7.  (a) The relation between total energy and the applied strain $\Delta l/l$ along the a/b directions of monolayer TiO2. The quadratic data fitting gives the in-plane stiffness of 2D structures. Black and red curves show the in-plane stiffness along the a and b directions of monolayer TiO2. The shift of VBMs and CBMs for (b-c) monolayer TiO2 with respect to the vacuum energy, as a function of the applied strain along either the a and b direction. The linear fit of the data yields the deformation potential constant.

    图 8  单/双轴应变下能隙变化

    Figure 8.  Band gap of monolayer TiO2 under uniaxial/biaxial strain, calculated using the HSE06 functional.

    图 9  单双/轴应变下单层TiO2光催化示意图

    Figure 9.  Schematic diagram of monolayer TiO2 photocatalysis under uniaxial/biaxial strain.

    图 10  光学性质 (a) 介电函数虚部; (b) 光吸收系数

    Figure 10.  Optical properties: (a) virtual part of dielectric function; (b) absorption coefficient.

    表 1  二维TiO2的结构常数和结合能

    Table 1.  Structure constants and binding energy of monolayer TiO2.

    Materiala/b${\theta _1}$/($^ \circ $)${\theta _2}$/($^ \circ $)l$\sigma $/ÅEf/eV
    TiO22.8991.6668.162.012.26–8.11
    MoS23.1882.5880.742.413.14–7.35
    DownLoad: CSV

    表 2  二维TiO2有效质量${m^ * }$, 形变势常数$E_{_{\rm{d}}}^i$, 弹性常数${C^{{\rm{2 D}}}}$和载流子迁移率${\mu _{{\rm{2 D}}}}$

    Table 2.  Calculated effective mass ${m^ * }$, deformation potential constant $E_{_{\rm{d}}}^i$, elastic modulus ${C^{{\rm{2 D}}}}$, and carrier mobility ${\mu _{{\rm{2 D}}}}$ for monolayer TiO2 along the a ($\zeta \to K$) and b ($\zeta \to G$) directions, where $\zeta $ represents the position of the valence band top and the conduction band bottom.

    Carrier type$m_a^ * $/${m_{\rm{e}}}$$m_b^ * $/${m_{\rm{e}}}$$m_l^ * $/${m_{\rm{e}}}$$\left| {{E_{la}}} \right|$/ eV$\left| {{E_{lb}}} \right|$/ eV$C_a^{2{\rm{D}}}$/ N·m–1$C_b^{{\rm{2 D}}}$/ N·m–1$\mu _a^{2{\rm{D}}}$/ cm2·V–1·s–1$\mu _b^{2{\rm{D}}}$/ cm2·V–1·s–1
    Electrons3.211.392.113.433.3821.2721.2812.9230.75
    Holes4.734.124.411.261.2521.2721.2831.0936.29
    DownLoad: CSV
    Baidu
  • [1]

    Hashimoto A, Suenaga K, Gloter A, Urita K, Iijima S 2004 Nature 430 870Google Scholar

    [2]

    Liu L, Zhang J, Zhao J, Liu F 2012 Nanoscale 4 5910Google Scholar

    [3]

    Kvashnin D G, Bellucci S, Chernozatonskii L A 2015 Phys. Chem. Chem. Phys. 17 4354Google Scholar

    [4]

    Liu Y, Duan X, Huang Y, Duan X 2018 Chem. Soc. Rev. 47 6388Google Scholar

    [5]

    Gupta S, Kutana A, Yakobson B I 2018 J. Phys. Chem. Lett. 9 2757Google Scholar

    [6]

    Yuan J, Yu N, Xue K, Miao X 2017 Appl. Surf. Sci. 409 85Google Scholar

    [7]

    Lee C, Wei X, Kysar J W, Hone J 2008 Science 321 385Google Scholar

    [8]

    Wang H, Chan T L, Xie Z 2018 Chem. Commun. (Camb) 54 385Google Scholar

    [9]

    Hartman T, Sofer Z 2019 ACS Nano 13 8566Google Scholar

    [10]

    Li P 2019 Phys. Chem. Chem. Phys. 21 11150Google Scholar

    [11]

    Li L, Yang J 2017 Nanotechnology 28 475701Google Scholar

    [12]

    Yuan J, Xie Q, Yu N, Wang J 2017 Appl. Surf. Sci. 394 625Google Scholar

    [13]

    Zhang S, Yan Z, Li Y, Chen Z, Zeng H 2015 Angew. Chem. Int. Ed. Engl. 54 3112Google Scholar

    [14]

    Zhang D, Xiong Y, Cheng J, Chai J, Liu T, Ba X, Ullah S, Zheng G, Yan M, Cao M S 2020 Sci. Bull. 65 138Google Scholar

    [15]

    Cao M S, Shu J C, Wang X X, Wang X, Zhang M, Yang H J, Fang X Y, Yuan J 2019 Ann. Phys.-Berlin 531 1800390Google Scholar

    [16]

    Cao M S, Wang X X, Zhang M, Shu J C, Cao W Q, Yang H J, Fang X Y, Yuan J 2019 Adv. Funct. Mater. 29 1807398Google Scholar

    [17]

    Matta S K, Zhang C, Jiao Y, O'mullane A, Du A 2018 Nanoscale 10 6369Google Scholar

    [18]

    Zhu Y L, Yuan J H, Song Y Q, Wang S, Xue K H, Xu M, Cheng X M, Miao X S 2019 J. Mater. Sci. 54 11485Google Scholar

    [19]

    Sun Y, Cheng H, Gao S, Sun Z, Liu Q, Liu Q, Lei F, Yao T, He J, Wei S, Xie Y 2012 Angew. Chem. Int. Ed. Engl. 51 8727Google Scholar

    [20]

    方文玉, 张鹏程, 赵军, 康文斌 2020 69 056301Google Scholar

    Fang W Y, Zhang P C, Zhao J, Kang W B 2020 Acta Phys. Sin. 69 056301Google Scholar

    [21]

    Chen Y, Wang L, Wang W, Cao M S 2017 Appl. Catal., B Environ. 209 110Google Scholar

    [22]

    Zhang Y, Kuwahara Y, Mori K, Yamashita H 2019 Chem. Asian J. 14 278Google Scholar

    [23]

    Liang Z, Sun B, Xu X, Cui H, Tian J 2019 Nanoscale 11 12266Google Scholar

    [24]

    Zeng H, Cui X 2015 Chem. Soc. Rev. 44 2629Google Scholar

    [25]

    Guo Z, Zhou J, Zhu L, Sun Z 2016 J. Mater. Chem. A 4 11446Google Scholar

    [26]

    Zhuang H L, Hennig R G 2013 Chem. Mater. 25 3232Google Scholar

    [27]

    Zhang X, Zhao X, Wu D, Jing Y, Zhou Z 2016 Adv. Sci. 3 1600062Google Scholar

    [28]

    Lacerda A M, Larrosa I, Dunn S 2015 Nanoscale 7 12331Google Scholar

    [29]

    Ishida Y, Motokane Y, Tokunaga T, Yonezawa T 2015 Phys. Chem. Chem. Phys. 17 24556Google Scholar

    [30]

    Yoshida T, Niimi S, Yamamoto M, Nomoto T, Yagi S 2015 J. Colloid Interface Sci. 447 278Google Scholar

    [31]

    Liu X, Chen Z, Cao M S 2019 ACS Appl. Energy Mater. 2 5960Google Scholar

    [32]

    Yang J, Jiang Y L, Li L J, Muhire E, Gao M Z 2016 Nanoscale 8 8170Google Scholar

    [33]

    Song S S, Xia B Y, Chen J, Yang J, Shen X, Fan S J, Guo M L, Sun Y M, Zhang X D 2014 RSC Adv. 4 42598Google Scholar

    [34]

    Liu X, Chen Z, Li W, Cao M S 2017 J. Phys. Chem. C 121 20605Google Scholar

    [35]

    Song X F, Hu L F, Li D H, Chen L, Sun Q Q, Zhou P, Zhang D W 2015 Sci Rep 5 15989Google Scholar

    [36]

    Tao J, Luttrell T, Batzill M 2011 Nat. Chem. 3 296Google Scholar

    [37]

    Xie Q, Yuan J, Yu N, Wang L, Wang J 2017 Comput. Mater. Sci. 135 160Google Scholar

    [38]

    Qiu G, Xiao Q, Hu Y, Qin W, Wang D 2004 J. Colloid Interface Sci. 270 127Google Scholar

    [39]

    Yuan J H, Song Y Q, Chen Q, Xue K H, Miao X S 2019 Appl. Surf. Sci. 469 456Google Scholar

    [40]

    Castellanos-Gomez A, Poot M, Steele G A, Van Der Zant H S, Agrait N, Rubio-Bollinger G 2012 Adv. Mater. 24 772Google Scholar

    [41]

    Yuan J, Yu N, Xue K, Miao X 2017 RSC Adv. 7 8654Google Scholar

    [42]

    Song Y Q, Yuan J H, Li L H, Xu M, Wang J F, Xue K H, Miao X S 2019 Nanoscale 11 1131Google Scholar

    [43]

    Xu L C, Du A, Kou L 2016 Phys. Chem. Chem. Phys. 18 27284Google Scholar

    [44]

    Peng R, Ma Y, He Z, Huang B, Kou L, Dai Y 2019 Nano Lett. 19 1227Google Scholar

    [45]

    Li P, You Z, Haugstad G, Cui T 2011 Appl. Phys. Lett. 98 253105Google Scholar

    [46]

    Wang Y, Ma R, Hu K, Kim S, Fang G, Shao Z, Tsukruk V V 2016 ACS Appl. Mater. Interfaces 8 24962Google Scholar

    [47]

    Li Y, Yu C, Gan Y, Kong Y, Jiang P, Zou D F, Li P, Yu X F, Wu R, Zhao H, Gao C F, Li J 2019 Nanotechnology 30 335703Google Scholar

    [48]

    Liu F, Ming P, Li J 2007 Phys. Rev. B 76 064120Google Scholar

    [49]

    Kudin K N, Scuseria G E, Yakobson B I 2001 Phys. Rev. B 64 235406Google Scholar

    [50]

    Kang J, Sahin H, Peeters F M 2015 Phys. Chem. Chem. Phys. 17 27742Google Scholar

    [51]

    Zhao J, Li Y, Ma J 2016 Nanoscale 8 9657Google Scholar

    [52]

    Yuan J, Yu N, Wang J, Xue K-H, Miao X 2018 Appl. Surf. Sci. 436 919Google Scholar

    [53]

    El Mragui A, Logvina Y, Pinto Da Silva L, Zegaoui O, Esteves Da Silva J C G 2019 Materials 1 2Google Scholar

    [54]

    An X, Hu C, Liu H, Qu J 2018 Langmuir 34 1883Google Scholar

    [55]

    Luican-Mayer A, Zhang Y, Dilullo A, Li Y, Fisher B, Ulloa S E, Hla S W 2019 Nanoscale 11 22351Google Scholar

    [56]

    Yu W, Zhang J, Peng T 2016 Appl. Catal., B Environ. 181 220Google Scholar

    [57]

    Zhong L, Chen X, Qi J 2017 Phys. Chem. Chem. Phys. 19 15388Google Scholar

    [58]

    Hua C, Sheng F, Hu Q, Xu Z A, Lu Y, Zheng Y 2018 J. Phys. Chem. Lett. 9 6695Google Scholar

    [59]

    Sarker H P, Rao P M, Huda M N 2019 ChemPhysChem 20 773Google Scholar

    [60]

    Fang W Y, Li P A, Yuan J H, Xue K H, Wang J F 2019 J. Electron. Mater. 49 959Google Scholar

    [61]

    Liu X, Wang Y, Li F, Li Y 2016 Phys. Chem. Chem. Phys. 18 14638Google Scholar

    [62]

    Xiao J, Long M, Li M, Li X, Xu H, Chan K 2015 Phys. Chem. Chem. Phys. 17 6865Google Scholar

    [63]

    Zhang J, Wageh S, Al-Ghamdi A, Yu J 2016 Appl. Catal., B Environ. 192 101Google Scholar

    [64]

    Mogulkoc A, Mogulkoc Y, Kecik D, Durgun E 2018 Phys. Chem. Chem. Phys. 20 21043Google Scholar

  • [1] Song Rui, Wang Bi-Li, Feng Kai, Yao Jia, Li Xia. Effect of stress regulation on electronic structure and optical properties of TiOCl2 monolayer. Acta Physica Sinica, 2022, 71(7): 077101. doi: 10.7498/aps.71.20212023
    [2] Li Fa-Yun, Yang Zhi-Xiong, Cheng Xue, Zeng Li-Ying, Ouyang Fang-Ping. First-principles study of electronic structure and optical properties of monolayer defective tellurene. Acta Physica Sinica, 2021, 70(16): 166301. doi: 10.7498/aps.70.20210271
    [3] Zhao Bai-Qiang, Zhang Yun, Qiu Xiao-Yan, Wang Xue-Wei. First-principles study on the electronic structures and optical properties of Cu, Fe doped LiNbO_3 crystals. Acta Physica Sinica, 2016, 65(1): 014212. doi: 10.7498/aps.65.014212
    [4] Luo Zui-Fen, Cen Wei-Fu, Fan Meng-Hui, Tang Jia-Jun, Zhao Yu-Jun. First-principles study of electronic and optical properties of BiTiO3. Acta Physica Sinica, 2015, 64(14): 147102. doi: 10.7498/aps.64.147102
    [5] Pan Feng-Chun, Lin Xue-Ling, Chen Huan-Ming. Electronic structure and optical properties of C doped rutile TiO2: the first-principles calculations. Acta Physica Sinica, 2015, 64(22): 224218. doi: 10.7498/aps.64.224218
    [6] Cheng Xu-Dong, Wu Hai-Xin, Tang Xiao-Lu, Wang Zhen-You, Xiao Rui-Chun, Huang Chang-Bao, Ni You-Bao. First principles study on the electronic structures and optical properties of Na2Ge2Se5. Acta Physica Sinica, 2014, 63(18): 184208. doi: 10.7498/aps.63.184208
    [7] Xie Zhi, Cheng Wen-Dan. First-principles study of electronic structure and optical properties of TiO2 nanotubes. Acta Physica Sinica, 2014, 63(24): 243102. doi: 10.7498/aps.63.243102
    [8] Cheng He-Ping, Dan Jia-Kun, Huang Zhi-Meng, Peng Hui, Chen Guang-Hua. First-principles study on the electronic structure and optical properties of RDX. Acta Physica Sinica, 2013, 62(16): 163102. doi: 10.7498/aps.62.163102
    [9] Yang Chun-Yan, Zhang Rong, Zhang Li-Min, Ke Xiang-Wei. Electronic structure and optical properties of 0.5NdAlO3-0.5CaTiO3 from first-principles calculation. Acta Physica Sinica, 2012, 61(7): 077702. doi: 10.7498/aps.61.077702
    [10] Song Qing-Gong, Liu Li-Wei, Zhao Hui, Yan Hui-Yu, Du Quan-Guo. First-principles study on the electronic structure and optical properties of YFeO3. Acta Physica Sinica, 2012, 61(10): 107102. doi: 10.7498/aps.61.107102
    [11] Wang Yin, Feng Qing, Wang Wei-Hua, Yue Yuan-Xia. First-principles study on the electronic and optical property of C-Zn co-doped anatase TiO2. Acta Physica Sinica, 2012, 61(19): 193102. doi: 10.7498/aps.61.193102
    [12] Yang Li-Jun, Chen Hai-Chuan. First-principles calculations of electronic structure, optical and elastic properties of LiGaX2(X=S, Se, Te). Acta Physica Sinica, 2011, 60(1): 014207. doi: 10.7498/aps.60.014207
    [13] Zhang Xue-Jun, Gao Pan, Liu Qing-Ju. First-principles study on electronic structure and optical properties of anatase TiO2 codoped with nitrogen and iron. Acta Physica Sinica, 2010, 59(7): 4930-4938. doi: 10.7498/aps.59.4930
    [14] Li Pei-Juan, Zhou Wei-Wei, Tang Yuan-Hao, Zhang Hua, Shi Si-Qi. Electronic structure,optical and lattice dynamical properties of CeO2:A first-principles study. Acta Physica Sinica, 2010, 59(5): 3426-3431. doi: 10.7498/aps.59.3426
    [15] Chen Qiu-Yun, Lai Xin-Chun, Wang Xiao-Ying, Zhang Yong-Bin, Tan Shi-Yong. First-principles study of the electronic structure and optical properties of UO2. Acta Physica Sinica, 2010, 59(7): 4945-4949. doi: 10.7498/aps.59.4945
    [16] Cui Dong-Meng, Xie Quan, Chen Qian, Zhao Feng-Juan, Li Xu-Zhen. First-principles study on the band structure and optical properties of strained Ru2Si3 semiconductor. Acta Physica Sinica, 2010, 59(3): 2027-2032. doi: 10.7498/aps.59.2027
    [17] Li Xu-Zhen, Xie Quan, Chen Qian, Zhao Feng-Juan, Cui Dong-Meng. The study on the electronic structure and optical properties of OsSi2. Acta Physica Sinica, 2010, 59(3): 2016-2021. doi: 10.7498/aps.59.2016
    [18] Kong Xiang-Lan, Hou Qin-Ying, Su Xi-Yu, Qi Yan-Hua, Zhi Xiao-Fen. First-principles study of the electronic structure and optical properties of Ba0.5Sr0.5TiO3. Acta Physica Sinica, 2009, 58(6): 4128-4131. doi: 10.7498/aps.58.4128
    [19] Bi Yan-Jun, Guo Zhi-You, Sun Hui-Qing, Lin Zhu, Dong Yu-Cheng. The electronic structure and optical properties of Co and Mn codoped ZnO from first-principle study. Acta Physica Sinica, 2008, 57(12): 7800-7805. doi: 10.7498/aps.57.7800
    [20] Duan Man-Yi, Xu Ming, Zhou Hai-Ping, Shen Yi-Bin, Chen Qing-Yun, Ding Ying-Chun, Zhu Wen-Jun. First-principles study on the electronic structure and optical properties of ZnO doped with transition metal and N. Acta Physica Sinica, 2007, 56(9): 5359-5365. doi: 10.7498/aps.56.5359
Metrics
  • Abstract views:  15672
  • PDF Downloads:  444
  • Cited By: 0
Publishing process
  • Received Date:  29 April 2020
  • Accepted Date:  20 May 2020
  • Available Online:  20 May 2020
  • Published Online:  20 August 2020

/

返回文章
返回
Baidu
map