Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Controllable quantum interference and photon transport in three-mode closed-loop cavity-atom system

Dai Yu-Fei Chen Yao-Tong Wang Lan Yin Kai Zhang Yan

Citation:

Controllable quantum interference and photon transport in three-mode closed-loop cavity-atom system

Dai Yu-Fei, Chen Yao-Tong, Wang Lan, Yin Kai, Zhang Yan
PDF
HTML
Get Citation
  • In recent years, it has been a hot research topic to study the interaction between atomic ensemble and cavities, and many researches have been done in this regard. In such a system, some atoms are trapped in the cavity, which can be used to study their dynamic characteristics, e.g., the evolution of photon numbers and photon transition. The Jaynes-Cummings model is an important model for studying the dynamic characteristics of the cavity-atom system, which is based on the interaction between a single two-level atom and the cavity field. Recently, coherent photon control in cavity under specific conditions has become an important part of quantum computing and communication. It is worth noting that the tunable photon transmission and all-optical switches based on the cavity have already aroused much interest and have been used in many areas. The quantum information and networks are mostly rooted in complex optical devices, which may show nonreciprocal or asymmetric photon transport. In this paper, we demonstrate that by using an optical closed-loop system the unconventional photon transport can be realized with two mutually perpendicular cavities coupled through external fiber and a two-level atom placed on the intersection. This three-mode system supports two orthogonal propagation directions, that is to say, and the interactions among probe fields are mutually perpendicular. Without ignoring the spontaneous decay of the natural atom, the complex and controllable quantum interference induced by the efficient hybrid interaction of the light, cavity modes, and the atom in such a closed-loop structure can result in a few interesting symmetric and asymmetric photon transport behaviors, i.e. coherent perfect synthesis and coherent perfect reflection. Aside from these compelling properties, the group velocity can also be modulated, i.e., fast and slow light effect. All of these processes can be dynamically controlled by using the probe field phase difference, the tunneling coupling between two cavities and the coupling between the cavity and the atom. Importantly, due to so many advantages, such a tunable scheme can be readily extended to some optical devices, e.g., the switch and the router that is challenging to conventional optical devices.
      Corresponding author: Zhang Yan, zhangy345@nenu.edu.cn
    [1]

    Mabuchi H, Doherty A C 2002 Science 298 1372Google Scholar

    [2]

    Vahala K J 2003 Nature (London) 424 839Google Scholar

    [3]

    Aoki T, Parkins A S, Alton D J, Regal C A, Dayan B, Ostby E, Vahala K J, Kimble H J 2009 Phys. Rev. Lett. 102 083601Google Scholar

    [4]

    Zhou L, Yang L P, Li Y, Sun C P 2013 Phys. Rev. Lett. 111 103604Google Scholar

    [5]

    Lu J, Zhou L, Kuang L M, Nori F 2014 Phys. Rev. A 89 013805Google Scholar

    [6]

    Hong F Y, Xiong S J 2008 Phys. Rev. A 78 013812Google Scholar

    [7]

    Li J, Zhang S, Yu R, Zhang D, Wu Y 2014 Phys. Rev. A 90 053832Google Scholar

    [8]

    Li J, Yu R, Ma J, Wu Y 2015 Phys. Rev. A 91 063834Google Scholar

    [9]

    Li J, Li J, Xiao Q, Wu Y 2016 Phys. Rev. A 93 063814Google Scholar

    [10]

    Agarwal G S, Zhu Y 2015 Phys. Rev. A 92 023824Google Scholar

    [11]

    Agarwal G S, Di K, Wang L, Zhu Y 2016 Phys. Rev. A 93 063805Google Scholar

    [12]

    Wang L, Di K, Zhu Y, Agarwal G S 2017 Phys. Rev. A 95 013841Google Scholar

    [13]

    Lu J, Wang Z H, Zhou L 2015 Opt.Express 23 022955Google Scholar

    [14]

    Yan W B, Huang J F, Fan H 2015 Sci.Rep. 3 3555

    [15]

    Kimble H J 2008 Nature (London) 453 1023Google Scholar

    [16]

    Stannigel K, Komar P, Habraken S J M, Bennett S D, Lukin M D, Zoller P, Rabl P 2012 Phys .Rev. Lett. 109 013603Google Scholar

    [17]

    Giunter G, Anappara A A, Hees J, Sell A, Biasiol G, Sorba L, De Liberato S, Ciuti C, Tredicucci A, Leitenstorfer A, Huber R 2009 Nature (London) 458 178Google Scholar

    [18]

    Nozaki K, Tanabe T, Shinya A, Matsuo S, Sato T, Taniyama H, Notomi M 2010 Nat. Photonics 4 477Google Scholar

    [19]

    Yan X B, Cui C L, Gu K H, Tian X D, Fu C B, Wu J H 2014 Opt. Express 22 004886Google Scholar

    [20]

    Liu Y L, Wu R, Zhang J, Ozdemir S K, Yang L, Nori F, Liu Y X 2017 Phys. Rev. A 95 013843Google Scholar

    [21]

    Zhang X Y, Guo Y Q, Pei P, Yi X X 2017 Phys. Rev. A 95 063825Google Scholar

    [22]

    Bajcsy M, Hofferberth S, Balic V, Peyronel T, Hafezi M, Zibrov A S, Vuletic V, Lukin M D 2009 Phys. Rev. Lett. 102 203902Google Scholar

    [23]

    Tanabe T, Notomi M, Mitsugi S, Shinya A, Kuramochi E 2005 Opt. Lett. 30 002575Google Scholar

    [24]

    Volz T, Reinhard A, Winger M, Badolato A, Hennessy K J, Hu E L 2012 Nat. Photonics 6 605Google Scholar

    [25]

    Tiecke T G, Thompson J D, de Leon N P, Liu L R, Vuleti’c V, Lukin M D 2014 Nature (London) 508 241Google Scholar

    [26]

    Cirac J I, Zoller P, Kimble H J, Mabuchi H 1997 Phys. Rev. Lett. 78 3221Google Scholar

    [27]

    Dawes A M C, Illing L, Clark S M, Gauthier D J 2005 Science 308 5722

    [28]

    Duan L M, Monroe C 2010 Rev. Mod. Phys. 82 1209Google Scholar

    [29]

    Bouwmeester D, Ekert A K, Zeilinger A 2000 The Physics of Quantum Information (New York: Springer) pp133−135

    [30]

    Weis S, Riviere R, Deleglise S, Gavartin E, Arcizet O, Schliesser A, Kippenberg T J 2010 Science 330 1520Google Scholar

    [31]

    Chan J, Alegre T P M, Safavi-Naeini A H, Hill J T, Krause A, Groblacher S, Aspelmeyer M, Painter O 2011 Nature (London) 478 89Google Scholar

    [32]

    Verhagen E, Deleglise S, Weis S A, Kippenberg T J 2012 Nature (London) 482 63Google Scholar

    [33]

    Liu X Y, Jing H, Ma J Y, Wu Y 2015 Phys. Rev. Lett. 114 253601Google Scholar

    [34]

    Du L, Fan C H, Zhang H X, Wu J H 2017 Sci. Rep. 7 15834Google Scholar

    [35]

    Manipatruni S, Robinson J T, Lipson M 2009 Phys. Rev. Lett. 102 213903Google Scholar

    [36]

    Agarwal G S, Huang S 2010 Phys. Rev. A 81 041803Google Scholar

    [37]

    Xu X W, Li Y, Chen A X, Liu Y X 2016 Phys. Rev. A 93 023827Google Scholar

    [38]

    Du L, Liu Y M, Jiang B, Zhang Y 2018 EPL 122 24001Google Scholar

    [39]

    Jiang C, Song L N, Li Y 2019 Phys. Rev. A 99 023823Google Scholar

    [40]

    Malz D, Toth L D, Bernier N R, Feofanov A K, Kippenberg T J, Nunnenkamp A 2018 Phys.Rev.Lett. 120 023601Google Scholar

    [41]

    Safavi-Naeini A H, Mayer A T P, Chan J, Eichenfield M, Winger M, Lin Q, Hill J T, Chang D E, Painter O 2011 Nature (London) 472 69Google Scholar

    [42]

    Asano M, Ozdemir S K, Chen W, Ikuta R, Yang L, Imoto N, Yamamoto T 2016 Phys. Rev. Lett. 108 181105

    [43]

    Li J H, Zhan X G, Ding C L, Zhang D, Wu Y 2015 Phys. Rev. A 92 043830Google Scholar

    [44]

    Du L, Zhang Y, Fan C H, Liu Y M, Gao F, Wu J H 2018 Sci. Rep. 8 2933Google Scholar

    [45]

    Colombe1 Y, Steinmetzl T, Dubois1 G, Linke1 F, Hunger D, Reichel1 J 2007 Nature (London) 450 272Google Scholar

    [46]

    Hattermann1 H, Bothner1 D, Ley1 L Y, Ferdinand1 B, Wiedmaier1 D, Sarkany1 L, Kleiner1 R, Koelle1 D, Fortagh1 J 2017 Nat. Commun. 8 2254Google Scholar

    [47]

    Farace A, Giovannetti V 2012 Phys. Rev. A 86 013820Google Scholar

    [48]

    Walls D F, Milburn G J 1994 Quantum Optics (Berlin: Springer Verlag) pp127−141

    [49]

    Gardiner C W, Zoller P 2004 Quantum Noise (Berlin: Springer) pp158−170

    [50]

    Cao C, Chen X, Duan Y W 2018 Optik 161 293Google Scholar

  • 图 1  (a)由两个光学腔模和原子组成的闭环三模系统图; (b)正交腔结构的装置图

    Figure 1.  (a) Schematic diagram of an optical system composed of two optical cavities and the atomic ensemble; (b) realistic setup of that optical system with the double-cavity orthogonal structure.

    图 2  当隧穿强度$J = 0, 3\kappa, 6\kappa $, 归一化输出场强度${I_{\rm a}}$(${I_{\rm b}}$)随输入场失谐$\varDelta /\kappa$的变化情况 (a) $\theta = 0$; (b) $\theta = \dfrac{{\text{π}}}{2}$ (a腔), $\theta = \dfrac{{3{\text{π}}}}{2}$ (b腔); (c) $\theta = {\text{π}}$; (d) $\theta = \dfrac{{\text{π}}}{2}$ (b腔), $\theta = \dfrac{{3{\text{π}}}}{2}$ (a腔). 其他参数分别为${g_0} = 2\kappa $, $\gamma = 2\kappa $, $\kappa = 1$

    Figure 2.  Normalized output field intensities ${I_{\rm a}}$ vs. normalized input field detuning $\varDelta /\kappa$ with tunneling strength$J = 0, 3\kappa, 6\kappa $: (a) $\theta = 0$; (b) $\theta = \dfrac{{\text{π}}}{2}$(cavity-a), $\theta = \dfrac{{3{\text{π}}}}{2}$(cavity-b); (c) $\theta = {\text{π}}$; (d) $\theta = \dfrac{{\text{π}}}{2}$ (cavity-b), $\theta = \dfrac{{3{\text{π}}}}{2}$(cavity-a). Other parameters are ${g_0} = 2\kappa $, $\gamma = 2\kappa $, $\kappa = 1$.

    图 3  归一化输出场强度${I_{\rm a}}$ (红色线)和${I_{\rm b}}$ (蓝色线)随相对相位$\theta $变化情况. 其他参数为$\varDelta = 4.88\kappa$, $J = 6\kappa $, ${g_0} = \kappa $, $\gamma = 2\kappa $, $\kappa = 1$

    Figure 3.  Normalized output field intensities ${I_{\rm a}}$ (red-line) and ${I_{\rm b}}$ (blue-line) vs. the relative phase $\theta $ with$\varDelta = 4.88\kappa$. Other parameters are $J = 6\kappa $, ${g_0} = \kappa $, $\gamma = 2\kappa $, $\kappa = 1$.

    图 4  输出群延迟${\tau _{\rm a}}\kappa$(${\tau _{\rm b}}\kappa$)随输入场失谐$\varDelta /\kappa$变化情况, 其中隧穿强度为 (a) $J = 0$, (b) $J = \kappa $, (c) $J = 2\kappa $, (d) $J = 3\kappa $; (e)输出群延迟${\tau _a}\kappa $(${\tau _b}\kappa $)与隧穿强度$J/\kappa $$\varDelta /\kappa = 1$时的关系图. 其他参数为${g_0} = 2\kappa $, $\gamma = 2\kappa $, $\kappa = 1$

    Figure 4.  Normalized output group delay ${\tau _{\rm a}}\kappa$(${\tau _{\rm b}}\kappa$) vs. normalized input field detuning $\varDelta /\kappa$ with tunneling strength of (a) $J = 0$,(b) $J = \kappa $, (c) $J = 2\kappa $, (d) $J = 3\kappa $; (e) output group delay ${\tau _{\rm a}}\kappa$(${\tau _{\rm b}}\kappa$) vs. normalized tunneling strength $J/\kappa $ for $\varDelta /\kappa = 1$. Other parameters are${g_0} = 2\kappa $, $\gamma = 2\kappa $, $\kappa = 1$.

    Baidu
  • [1]

    Mabuchi H, Doherty A C 2002 Science 298 1372Google Scholar

    [2]

    Vahala K J 2003 Nature (London) 424 839Google Scholar

    [3]

    Aoki T, Parkins A S, Alton D J, Regal C A, Dayan B, Ostby E, Vahala K J, Kimble H J 2009 Phys. Rev. Lett. 102 083601Google Scholar

    [4]

    Zhou L, Yang L P, Li Y, Sun C P 2013 Phys. Rev. Lett. 111 103604Google Scholar

    [5]

    Lu J, Zhou L, Kuang L M, Nori F 2014 Phys. Rev. A 89 013805Google Scholar

    [6]

    Hong F Y, Xiong S J 2008 Phys. Rev. A 78 013812Google Scholar

    [7]

    Li J, Zhang S, Yu R, Zhang D, Wu Y 2014 Phys. Rev. A 90 053832Google Scholar

    [8]

    Li J, Yu R, Ma J, Wu Y 2015 Phys. Rev. A 91 063834Google Scholar

    [9]

    Li J, Li J, Xiao Q, Wu Y 2016 Phys. Rev. A 93 063814Google Scholar

    [10]

    Agarwal G S, Zhu Y 2015 Phys. Rev. A 92 023824Google Scholar

    [11]

    Agarwal G S, Di K, Wang L, Zhu Y 2016 Phys. Rev. A 93 063805Google Scholar

    [12]

    Wang L, Di K, Zhu Y, Agarwal G S 2017 Phys. Rev. A 95 013841Google Scholar

    [13]

    Lu J, Wang Z H, Zhou L 2015 Opt.Express 23 022955Google Scholar

    [14]

    Yan W B, Huang J F, Fan H 2015 Sci.Rep. 3 3555

    [15]

    Kimble H J 2008 Nature (London) 453 1023Google Scholar

    [16]

    Stannigel K, Komar P, Habraken S J M, Bennett S D, Lukin M D, Zoller P, Rabl P 2012 Phys .Rev. Lett. 109 013603Google Scholar

    [17]

    Giunter G, Anappara A A, Hees J, Sell A, Biasiol G, Sorba L, De Liberato S, Ciuti C, Tredicucci A, Leitenstorfer A, Huber R 2009 Nature (London) 458 178Google Scholar

    [18]

    Nozaki K, Tanabe T, Shinya A, Matsuo S, Sato T, Taniyama H, Notomi M 2010 Nat. Photonics 4 477Google Scholar

    [19]

    Yan X B, Cui C L, Gu K H, Tian X D, Fu C B, Wu J H 2014 Opt. Express 22 004886Google Scholar

    [20]

    Liu Y L, Wu R, Zhang J, Ozdemir S K, Yang L, Nori F, Liu Y X 2017 Phys. Rev. A 95 013843Google Scholar

    [21]

    Zhang X Y, Guo Y Q, Pei P, Yi X X 2017 Phys. Rev. A 95 063825Google Scholar

    [22]

    Bajcsy M, Hofferberth S, Balic V, Peyronel T, Hafezi M, Zibrov A S, Vuletic V, Lukin M D 2009 Phys. Rev. Lett. 102 203902Google Scholar

    [23]

    Tanabe T, Notomi M, Mitsugi S, Shinya A, Kuramochi E 2005 Opt. Lett. 30 002575Google Scholar

    [24]

    Volz T, Reinhard A, Winger M, Badolato A, Hennessy K J, Hu E L 2012 Nat. Photonics 6 605Google Scholar

    [25]

    Tiecke T G, Thompson J D, de Leon N P, Liu L R, Vuleti’c V, Lukin M D 2014 Nature (London) 508 241Google Scholar

    [26]

    Cirac J I, Zoller P, Kimble H J, Mabuchi H 1997 Phys. Rev. Lett. 78 3221Google Scholar

    [27]

    Dawes A M C, Illing L, Clark S M, Gauthier D J 2005 Science 308 5722

    [28]

    Duan L M, Monroe C 2010 Rev. Mod. Phys. 82 1209Google Scholar

    [29]

    Bouwmeester D, Ekert A K, Zeilinger A 2000 The Physics of Quantum Information (New York: Springer) pp133−135

    [30]

    Weis S, Riviere R, Deleglise S, Gavartin E, Arcizet O, Schliesser A, Kippenberg T J 2010 Science 330 1520Google Scholar

    [31]

    Chan J, Alegre T P M, Safavi-Naeini A H, Hill J T, Krause A, Groblacher S, Aspelmeyer M, Painter O 2011 Nature (London) 478 89Google Scholar

    [32]

    Verhagen E, Deleglise S, Weis S A, Kippenberg T J 2012 Nature (London) 482 63Google Scholar

    [33]

    Liu X Y, Jing H, Ma J Y, Wu Y 2015 Phys. Rev. Lett. 114 253601Google Scholar

    [34]

    Du L, Fan C H, Zhang H X, Wu J H 2017 Sci. Rep. 7 15834Google Scholar

    [35]

    Manipatruni S, Robinson J T, Lipson M 2009 Phys. Rev. Lett. 102 213903Google Scholar

    [36]

    Agarwal G S, Huang S 2010 Phys. Rev. A 81 041803Google Scholar

    [37]

    Xu X W, Li Y, Chen A X, Liu Y X 2016 Phys. Rev. A 93 023827Google Scholar

    [38]

    Du L, Liu Y M, Jiang B, Zhang Y 2018 EPL 122 24001Google Scholar

    [39]

    Jiang C, Song L N, Li Y 2019 Phys. Rev. A 99 023823Google Scholar

    [40]

    Malz D, Toth L D, Bernier N R, Feofanov A K, Kippenberg T J, Nunnenkamp A 2018 Phys.Rev.Lett. 120 023601Google Scholar

    [41]

    Safavi-Naeini A H, Mayer A T P, Chan J, Eichenfield M, Winger M, Lin Q, Hill J T, Chang D E, Painter O 2011 Nature (London) 472 69Google Scholar

    [42]

    Asano M, Ozdemir S K, Chen W, Ikuta R, Yang L, Imoto N, Yamamoto T 2016 Phys. Rev. Lett. 108 181105

    [43]

    Li J H, Zhan X G, Ding C L, Zhang D, Wu Y 2015 Phys. Rev. A 92 043830Google Scholar

    [44]

    Du L, Zhang Y, Fan C H, Liu Y M, Gao F, Wu J H 2018 Sci. Rep. 8 2933Google Scholar

    [45]

    Colombe1 Y, Steinmetzl T, Dubois1 G, Linke1 F, Hunger D, Reichel1 J 2007 Nature (London) 450 272Google Scholar

    [46]

    Hattermann1 H, Bothner1 D, Ley1 L Y, Ferdinand1 B, Wiedmaier1 D, Sarkany1 L, Kleiner1 R, Koelle1 D, Fortagh1 J 2017 Nat. Commun. 8 2254Google Scholar

    [47]

    Farace A, Giovannetti V 2012 Phys. Rev. A 86 013820Google Scholar

    [48]

    Walls D F, Milburn G J 1994 Quantum Optics (Berlin: Springer Verlag) pp127−141

    [49]

    Gardiner C W, Zoller P 2004 Quantum Noise (Berlin: Springer) pp158−170

    [50]

    Cao C, Chen X, Duan Y W 2018 Optik 161 293Google Scholar

  • [1] Peng Shu-Ping, Deng Shu-Ling, Liu Qian, Dong Cheng-Qi, Fan Zhi-Qiang. Quantum interference and spin transport in M-OPE molecular devices controlled by N or B atom substitution. Acta Physica Sinica, 2024, 73(10): 108501. doi: 10.7498/aps.73.20240174
    [2] Zhao Wen-Jing, Wen Ling-Hua. Quantum reflection and interference of spin-dependent Bose-Einstein condensates in semi-infinite potential wells. Acta Physica Sinica, 2017, 66(23): 230301. doi: 10.7498/aps.66.230301
    [3] Feng Ling-Juan, Xia Yun-Jie. Entanglement evolution of three interacting twolevel atoms within a common environment. Acta Physica Sinica, 2015, 64(1): 010302. doi: 10.7498/aps.64.010302
    [4] Xu Xue-Xiang, Zhang Ying-Kong, Zhang Hao-Liang, Chen Yuan-Yuan. Wigner function of N00N state and quantum interference with N00N state as input. Acta Physica Sinica, 2013, 62(11): 114204. doi: 10.7498/aps.62.114204
    [5] Zhang Zhi-Ying, Fu Shen-Cheng, Gou Li-Dan, Yao Zhi-Hai. Phase and amplitude-dependent inversionless gain controlled by a three-level closed loop system. Acta Physica Sinica, 2013, 62(10): 104206. doi: 10.7498/aps.62.104206
    [6] Sun Jiang, Sun Juan, Wang Ying, Su Hong-Xin, Cao Jin-Feng. The three-photon resonant nondegenerate six-wave mixing via quantum interference in the middle level. Acta Physica Sinica, 2012, 61(11): 114213. doi: 10.7498/aps.61.114213
    [7] Zhang Qin, Jin Kang, Tang Yuan-He, Qu Guang-Hui. The radiation pressure and laser cooling of a V-type three level atom. Acta Physica Sinica, 2011, 60(5): 053204. doi: 10.7498/aps.60.053204
    [8] Li Yue-Ke, Zhang Gui-Ming, Gao Yun-Feng. Influence of Kerr-effect on the quantum interference of the cavity field spectrum within two mode binomial initial field. Acta Physica Sinica, 2010, 59(9): 6178-6184. doi: 10.7498/aps.59.6178
    [9] Li Yue-Ke, Zhang Gui-Ming, Gao Yun-Feng. Quantum interference in the cavity field spectra of nondegenerate two-photon Jaynes-Cummings model. Acta Physica Sinica, 2010, 59(3): 1786-1790. doi: 10.7498/aps.59.1786
    [10] Liu Chun-Xu, Zhang Ji-Sen, Liu Jun-Ye, Jin Guang. The quantum coherent left handness of Λ-type four level system in Er3+:YAlO3 crystal. Acta Physica Sinica, 2009, 58(8): 5778-5783. doi: 10.7498/aps.58.5778
    [11] Xia Qing-Feng, Zhou Yu-Xin, GaoYun-Feng. The quantum interference of the two-mode cavity field spectra. Acta Physica Sinica, 2009, 58(3): 1685-1688. doi: 10.7498/aps.58.1685
    [12] Zheng Jun, Liu Zheng-Dong, Zeng Fu-Hua, Fang Hui-Juan. Electromagnetically induced left-handedness with vacuum-induced coherence. Acta Physica Sinica, 2008, 57(12): 7658-7662. doi: 10.7498/aps.57.7658
    [13] Zeng Fu-Hua, Liu Zheng-Dong, Zheng Jun, Fang Hui-Juan. The left-handedness effect of quantum manipulation in medium. Acta Physica Sinica, 2008, 57(4): 2218-2221. doi: 10.7498/aps.57.2218
    [14] Ma Rui-Qiong, Li Yong-Fang, Shi Jian. Quantum interference effects of coherent instantaneous states and Berry phase. Acta Physica Sinica, 2008, 57(7): 4083-4090. doi: 10.7498/aps.57.4083
    [15] Zheng Jun, Liu Zheng-Dong, Zeng Fu-Hua, Fang Hui-Juan. Electromagnetically induced left handedness in inverted Y-type four level atomic system. Acta Physica Sinica, 2008, 57(7): 4219-4223. doi: 10.7498/aps.57.4219
    [16] Chen Jun, Liu Zheng-Dong, Zheng Jun, Fang Hui-Juan. Effect of vacuum-induced coherence in a four-level atomic system via quantum interference. Acta Physica Sinica, 2007, 56(11): 6441-6445. doi: 10.7498/aps.56.6441
    [17] Chen Jun, Liu Zheng-Dong, You Su-Ping. The hole burning and optical bistability of quasi-Λ-type four-level atom system. Acta Physica Sinica, 2006, 55(12): 6410-6413. doi: 10.7498/aps.55.6410
    [18] Zhang Li-Ying, Liu Zheng-Dong. Absorption and dispersion in probe laser in the four-level Y-type atom system. Acta Physica Sinica, 2005, 54(8): 3641-3645. doi: 10.7498/aps.54.3641
    [19] Sun Jiang, Zuo Zhan-Chun, Mi Xin, Yu Zu-He, Wu Ling-An, Fu Pan-Ming. Two-photon resonant nondegenerate four-wave mixing via quantum interference. Acta Physica Sinica, 2005, 54(1): 149-154. doi: 10.7498/aps.54.149
    [20] Liu Zheng-Dong, Wu Qiang. Electromagnetically induced transparency in a four-level atomic system driven by three coupled fields. Acta Physica Sinica, 2004, 53(9): 2970-2973. doi: 10.7498/aps.53.2970
Metrics
  • Abstract views:  6405
  • PDF Downloads:  105
  • Cited By: 0
Publishing process
  • Received Date:  06 February 2020
  • Accepted Date:  29 March 2020
  • Published Online:  05 June 2020

/

返回文章
返回
Baidu
map