Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Quantum reflection and interference of spin-dependent Bose-Einstein condensates in semi-infinite potential wells

Zhao Wen-Jing Wen Ling-Hua

Citation:

Quantum reflection and interference of spin-dependent Bose-Einstein condensates in semi-infinite potential wells

Zhao Wen-Jing, Wen Ling-Hua
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The quantum reflection and interference of Bose-Einstein condensates (BECs) encountering a potential barrier or well is one of the most efficient ways of studying the exotic properties of macroscopic matter waves. As a matter of fact, one can reveal the quantum nature, coherence properties, and many-body effects as well as the potential applications of ultracold atomic gases by virtue of the quantum reflection and interference of BECs. Although there have been extensive investigations regarding the quantum reflection and interference of single-component BECs, so far there have been very few studies regarding those of multi-component BECs. In this work, we investigate the quantum reflections and interferences of spin-dependent BECs in semi-infinite potential wells by using the propagation method and the time-of-flight imaging scheme which is widely used in cold atom experiments. We obtain the exact analytical solutions of the spin-dependent condensate wave functions in the semi-infinite potential wells. It is shown that once the spin-dependent optical lattice is switched off the spin-dependent matter wave packets delocalized in different lattice sites interfere with each other during the free expansion. Consequently, the interference fringes with high contrast are formed. At the same time, the expanded spin-dependent matter waves encounter the hard wall of the semi-infinite potential well, which leads to a quantum reflection. There is a double interference between the reflected wave and the freely expanded incident wave, which is characterized by the significant modulation effect in the interference patterns. Concretely, there exist intense density oscillations in several symmetric and local regions of the interference fringes. Essentially, the double interference is a self-interference of BECs, and it results from the interference between the spin-dependent BEC and the BEC image, where the hard wall severs as a mirror plane. Therefore it is similar to Young's double-slit interference in wave optics, and a standing wave node is formed at the trap wall. In particular, the positions and the intervals of the local density oscillations in the interference patterns are determined by evolution time, laser wavelength and laser intensity, which is verified in the numerical simulations and calculations. In addition, the effects of spin state, transport distance, and relative phase on the interference fringes are analyzed and discussed. The present investigation is helpful in understanding the macroscopic quantum properties of the spin-dependent BECs, and provides a new scheme to test the theoretical model and physical mechanism of the condensate interference in a spin-dependent optical lattice.
      Corresponding author: Wen Ling-Hua, linghuawen@ysu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11475144), the Natural Science Foundation of Hebei Province of China (Grant No. A2015203037), and the Research Foundation for Advanced Talents of Yanshan University, China (Grant No. B846).
    [1]

    Andrews M R, Townsend C G, Miesner H J, Durfee D S, Kurn D M, Ketterle W 1997 Science 275 637

    [2]

    Pasquini T A, Shin Y, Sanner C, Saba M, Schirotzek A, Pritchard D E, Ketterle W 2004 Phys. Rev. Lett. 93 223201

    [3]

    Pasquini T A, Saba M, Jo G, Shin Y, Ketterle W, Pritchard D E, Savas T A, Mulders N 2006 Phys. Rev. Lett. 97 093201

    [4]

    Greiner M, Mandel O, Esslinger T, Hänsch T W, Bloch I 2002 Nature 415 39

    [5]

    Hofferberth S, Lesanovsky I, Schumm T, Imambekov A, Gritsev V, Demler E, Schmiedmayer J 2008 Nat. Phys. 4 489

    [6]

    Fang B, Johnson A, Roscilde T, Bouchoule I 2016 Phys. Rev. Lett. 116 050402

    [7]

    Chang R, Bouton Q, Cayla H, Qu C, Aspect A, Westbrook C I, Clement D 2016 Phys. Rev. Lett. 117 235303

    [8]

    Castellanos E, Rivas J I 2015 Phys. Rev. D 91 084019

    [9]

    Wen L H, Wang J S, Feng J, Hu H Q 2008 J. Phys. B 41 135301

    [10]

    Scott R G, Martin A M, Fromhold T M, Sheard F W 2005 Phys. Rev. Lett. 95 073201

    [11]

    Marchant A L, Billam T P, Yu M M H, Rakonjac A, Helm J L, Polo J, Weiss C, Gardiner S A, Cornish S L 2016 Phys. Rev. A 93 021604

    [12]

    Berrada T, van Frank S, Bucker R, Schumm T, Schaff J F, Schmiedmayer J, Julia-Diaz B, Polls A 2016 Phys. Rev. A 93 063620

    [13]

    Fouda M F, Fang R, Ketterson J B, Shahriar M S 2016 Phys. Rev. A 94 063644

    [14]

    Mandel O, Greiner M, Widera A, Rom T, Hänsch T W, Bloch I 2003 Phys. Rev. Lett. 91 010407

    [15]

    Castin Y, Dalibard J 1997 Phys. Rev. A 55 4330

    [16]

    Yang X X, Wu Y 1999 Phys. Lett. A 253 219

    [17]

    Liu W M, Wu B, Niu Q 2000 Phys. Rev. Lett. 84 2294

    [18]

    Xiong H, Liu S, Huang G, Xu Z 2002 J. Phys. B 35 4863

    [19]

    Liu S, Xiong H, Xu Z, Huang G 2003 J. Phys. B 36 2083

    [20]

    Xiong H, Liu S, Zhan M 2006 New J. Phys. 8 245

    [21]

    Bach R, Rzazewski K 2004 Phys. Rev. Lett. 92 200401

    [22]

    Liu S, Xiong H 2007 New J. Phys. 9 412

    [23]

    Hadzibabic Z, Stock S, Battelier B, Bretin V, Dalibard J 2004 Phys. Rev. Lett. 93 180403

    [24]

    Ashhab S 2005 Phys. Rev. A 71 063602

    [25]

    Wen L H, Liu M, Xiong H W, Zhan M S 2005 Eur. Phys. J. D 36 89

    [26]

    Wen L H, Liu M, Kong L B, Chen A X, Zhan M S 2005 Chin. Phys. 14 690

    [27]

    Wen L H, Liu M, Kong L B, Zhan M S 2005 Chin. Phys. Lett. 22 812

    [28]

    Yue X, Liu S, Wu B, Xiong H 2017 Chin. Phys. B 26 050501

    [29]

    Wen L H, Xiong H W, Wu B 2010 Phys. Rev. A 82 053627

    [30]

    Wen L H, Li J H 2014 Phys. Rev. A 90 053621

    [31]

    Feynman R P, Hibbs A R 1965 Quantum Mechanics and Path Integrals (New York:McGraw-Hill Inc.) pp26-74

    [32]

    Akhundova E A, Dodonov V V, Man'ko V I 1985 J. Phys. A 18 467

    [33]

    Pedri P, Pitaevskii L, Stringari S, Fort C, Burger S, Cataliotti F S, Maddaloni P, Minardi F, Inguscio M 2001 Phys. Rev. Lett. 87 220401

    [34]

    Robinett W 2006 Phys. Scr. 73 681

  • [1]

    Andrews M R, Townsend C G, Miesner H J, Durfee D S, Kurn D M, Ketterle W 1997 Science 275 637

    [2]

    Pasquini T A, Shin Y, Sanner C, Saba M, Schirotzek A, Pritchard D E, Ketterle W 2004 Phys. Rev. Lett. 93 223201

    [3]

    Pasquini T A, Saba M, Jo G, Shin Y, Ketterle W, Pritchard D E, Savas T A, Mulders N 2006 Phys. Rev. Lett. 97 093201

    [4]

    Greiner M, Mandel O, Esslinger T, Hänsch T W, Bloch I 2002 Nature 415 39

    [5]

    Hofferberth S, Lesanovsky I, Schumm T, Imambekov A, Gritsev V, Demler E, Schmiedmayer J 2008 Nat. Phys. 4 489

    [6]

    Fang B, Johnson A, Roscilde T, Bouchoule I 2016 Phys. Rev. Lett. 116 050402

    [7]

    Chang R, Bouton Q, Cayla H, Qu C, Aspect A, Westbrook C I, Clement D 2016 Phys. Rev. Lett. 117 235303

    [8]

    Castellanos E, Rivas J I 2015 Phys. Rev. D 91 084019

    [9]

    Wen L H, Wang J S, Feng J, Hu H Q 2008 J. Phys. B 41 135301

    [10]

    Scott R G, Martin A M, Fromhold T M, Sheard F W 2005 Phys. Rev. Lett. 95 073201

    [11]

    Marchant A L, Billam T P, Yu M M H, Rakonjac A, Helm J L, Polo J, Weiss C, Gardiner S A, Cornish S L 2016 Phys. Rev. A 93 021604

    [12]

    Berrada T, van Frank S, Bucker R, Schumm T, Schaff J F, Schmiedmayer J, Julia-Diaz B, Polls A 2016 Phys. Rev. A 93 063620

    [13]

    Fouda M F, Fang R, Ketterson J B, Shahriar M S 2016 Phys. Rev. A 94 063644

    [14]

    Mandel O, Greiner M, Widera A, Rom T, Hänsch T W, Bloch I 2003 Phys. Rev. Lett. 91 010407

    [15]

    Castin Y, Dalibard J 1997 Phys. Rev. A 55 4330

    [16]

    Yang X X, Wu Y 1999 Phys. Lett. A 253 219

    [17]

    Liu W M, Wu B, Niu Q 2000 Phys. Rev. Lett. 84 2294

    [18]

    Xiong H, Liu S, Huang G, Xu Z 2002 J. Phys. B 35 4863

    [19]

    Liu S, Xiong H, Xu Z, Huang G 2003 J. Phys. B 36 2083

    [20]

    Xiong H, Liu S, Zhan M 2006 New J. Phys. 8 245

    [21]

    Bach R, Rzazewski K 2004 Phys. Rev. Lett. 92 200401

    [22]

    Liu S, Xiong H 2007 New J. Phys. 9 412

    [23]

    Hadzibabic Z, Stock S, Battelier B, Bretin V, Dalibard J 2004 Phys. Rev. Lett. 93 180403

    [24]

    Ashhab S 2005 Phys. Rev. A 71 063602

    [25]

    Wen L H, Liu M, Xiong H W, Zhan M S 2005 Eur. Phys. J. D 36 89

    [26]

    Wen L H, Liu M, Kong L B, Chen A X, Zhan M S 2005 Chin. Phys. 14 690

    [27]

    Wen L H, Liu M, Kong L B, Zhan M S 2005 Chin. Phys. Lett. 22 812

    [28]

    Yue X, Liu S, Wu B, Xiong H 2017 Chin. Phys. B 26 050501

    [29]

    Wen L H, Xiong H W, Wu B 2010 Phys. Rev. A 82 053627

    [30]

    Wen L H, Li J H 2014 Phys. Rev. A 90 053621

    [31]

    Feynman R P, Hibbs A R 1965 Quantum Mechanics and Path Integrals (New York:McGraw-Hill Inc.) pp26-74

    [32]

    Akhundova E A, Dodonov V V, Man'ko V I 1985 J. Phys. A 18 467

    [33]

    Pedri P, Pitaevskii L, Stringari S, Fort C, Burger S, Cataliotti F S, Maddaloni P, Minardi F, Inguscio M 2001 Phys. Rev. Lett. 87 220401

    [34]

    Robinett W 2006 Phys. Scr. 73 681

  • [1] Peng Shu-Ping, Deng Shu-Ling, Liu Qian, Dong Cheng-Qi, Fan Zhi-Qiang. Quantum interference and spin transport in M-OPE molecular devices controlled by N or B atom substitution. Acta Physica Sinica, 2024, 73(10): 108501. doi: 10.7498/aps.73.20240174
    [2] Peng Shu-Ping, Huang Xu-Dong, Liu Qian, Ren Peng, Wu Dan, Fan Zhi-Qiang. First-principles study of single-molecule-structure determination of dithienoborepin isomers. Acta Physica Sinica, 2023, 72(5): 058501. doi: 10.7498/aps.72.20221973
    [3] Dai Yu-Fei, Chen Yao-Tong, Wang Lan, Yin Kai, Zhang Yan. Controllable quantum interference and photon transport in three-mode closed-loop cavity-atom system. Acta Physica Sinica, 2020, 69(11): 113701. doi: 10.7498/aps.69.20200184
    [4] He Li, Yu Zeng-Qiang. Landau critical velocity of spin-orbit-coupled Bose-Einstein condensate across quantum phase transition. Acta Physica Sinica, 2017, 66(22): 220301. doi: 10.7498/aps.66.220301
    [5] Zhang Zhi-Ying, Fu Shen-Cheng, Gou Li-Dan, Yao Zhi-Hai. Phase and amplitude-dependent inversionless gain controlled by a three-level closed loop system. Acta Physica Sinica, 2013, 62(10): 104206. doi: 10.7498/aps.62.104206
    [6] Xu Xue-Xiang, Zhang Ying-Kong, Zhang Hao-Liang, Chen Yuan-Yuan. Wigner function of N00N state and quantum interference with N00N state as input. Acta Physica Sinica, 2013, 62(11): 114204. doi: 10.7498/aps.62.114204
    [7] Wang Jian-Zhong, Cao Hui, Dou Fu-Quan. Many-body quantum fluctuation effects of Rosen-Zener transition in Bose-Einstein condensates. Acta Physica Sinica, 2012, 61(22): 220305. doi: 10.7498/aps.61.220305
    [8] Sun Jiang, Sun Juan, Wang Ying, Su Hong-Xin, Cao Jin-Feng. The three-photon resonant nondegenerate six-wave mixing via quantum interference in the middle level. Acta Physica Sinica, 2012, 61(11): 114213. doi: 10.7498/aps.61.114213
    [9] Li Yue-Ke, Zhang Gui-Ming, Gao Yun-Feng. Quantum interference in the cavity field spectra of nondegenerate two-photon Jaynes-Cummings model. Acta Physica Sinica, 2010, 59(3): 1786-1790. doi: 10.7498/aps.59.1786
    [10] Li Yue-Ke, Zhang Gui-Ming, Gao Yun-Feng. Influence of Kerr-effect on the quantum interference of the cavity field spectrum within two mode binomial initial field. Acta Physica Sinica, 2010, 59(9): 6178-6184. doi: 10.7498/aps.59.6178
    [11] Liu Chun-Xu, Zhang Ji-Sen, Liu Jun-Ye, Jin Guang. The quantum coherent left handness of Λ-type four level system in Er3+:YAlO3 crystal. Acta Physica Sinica, 2009, 58(8): 5778-5783. doi: 10.7498/aps.58.5778
    [12] Xia Qing-Feng, Zhou Yu-Xin, GaoYun-Feng. The quantum interference of the two-mode cavity field spectra. Acta Physica Sinica, 2009, 58(3): 1685-1688. doi: 10.7498/aps.58.1685
    [13] Zheng Jun, Liu Zheng-Dong, Zeng Fu-Hua, Fang Hui-Juan. Electromagnetically induced left handedness in inverted Y-type four level atomic system. Acta Physica Sinica, 2008, 57(7): 4219-4223. doi: 10.7498/aps.57.4219
    [14] Zheng Jun, Liu Zheng-Dong, Zeng Fu-Hua, Fang Hui-Juan. Electromagnetically induced left-handedness with vacuum-induced coherence. Acta Physica Sinica, 2008, 57(12): 7658-7662. doi: 10.7498/aps.57.7658
    [15] Zeng Fu-Hua, Liu Zheng-Dong, Zheng Jun, Fang Hui-Juan. The left-handedness effect of quantum manipulation in medium. Acta Physica Sinica, 2008, 57(4): 2218-2221. doi: 10.7498/aps.57.2218
    [16] Ma Rui-Qiong, Li Yong-Fang, Shi Jian. Quantum interference effects of coherent instantaneous states and Berry phase. Acta Physica Sinica, 2008, 57(7): 4083-4090. doi: 10.7498/aps.57.4083
    [17] Chen Jun, Liu Zheng-Dong, Zheng Jun, Fang Hui-Juan. Effect of vacuum-induced coherence in a four-level atomic system via quantum interference. Acta Physica Sinica, 2007, 56(11): 6441-6445. doi: 10.7498/aps.56.6441
    [18] Ma Yun, Fu Li-Bin, Yang Zhi-An, Liu Jie. Dynamical phase changes of the self-trapping of Bose-Einstein condensates and its characteristic of entanglement. Acta Physica Sinica, 2006, 55(11): 5623-5628. doi: 10.7498/aps.55.5623
    [19] Chen Jun, Liu Zheng-Dong, You Su-Ping. The hole burning and optical bistability of quasi-Λ-type four-level atom system. Acta Physica Sinica, 2006, 55(12): 6410-6413. doi: 10.7498/aps.55.6410
    [20] Sun Jiang, Zuo Zhan-Chun, Mi Xin, Yu Zu-He, Wu Ling-An, Fu Pan-Ming. Two-photon resonant nondegenerate four-wave mixing via quantum interference. Acta Physica Sinica, 2005, 54(1): 149-154. doi: 10.7498/aps.54.149
Metrics
  • Abstract views:  5837
  • PDF Downloads:  261
  • Cited By: 0
Publishing process
  • Received Date:  14 April 2017
  • Accepted Date:  05 July 2017
  • Published Online:  05 December 2017

/

返回文章
返回
Baidu
map