-
In this work, pressure-induced rapid solidification of polyphenylene sulfide (PPS) melt is studied on a pressure-jump apparatus. Five PPS samples under a pressure of 0.1 GPa are heated to 563 K, 573 K, 583 K, 603 K and 613 K, respectively. These samples are rapidly compressed to 2.4 GPa in about 20 ms. The solidified samples are quenched to room temperature and then depressured to ambient pressure. The X-ray diffraction (XRD) analyses of the recovered samples indicate that three PPS samples, prepared at 563 K, 573 K and 583 K, contain crystal phases but their crystallinity is lower than that of the original PPS powder. The remaining two PPS samples, prepared at 603 K and 613 K, are in amorphous state but do not sharp crystal diffraction peaks in the XRD patterns. Differential scanning calorimetry curves of the five PPS samples each display an endothermic step of glass transition at about 325 K and an exothermic peak of recrystallization around 360 K. The glass transition temperature decreases roughly with the increase of preparation temperature. The thermal enthalpy of recrystallization process increases with the increase of preparation temperature, indicating that the content of amorphous phase increases. We speculate that the recovered samples are in a “frozen state” of their parent liquid. At 563 K, 573 K and 583 K, the crystalline phases partially melt. More crystal phases melt with the increase of preparation temperature. The molten part is rapidly solidified into amorphous phase. At a temperature higher than 603 K, the crystalline phase fully melts, and after being rapidly compressed, amorphous PPS sample is obtained. For the amorphous PPS sample prepared at 613 K, we investigate whether the interior of this amorphous PPS sample is also in amorphous state. Micro XRD analysis indicates that the central part of the PPS sample is also in amorphous state, which suggests that this PPS sample is of a fully amorphous bulk. For the amorphous PPS sample prepared at 613 K, we investigate its recrystallization product. After being annealed at 425 K for 2 h, the amorphous phase, which is solidified from the melt of crystal phase, is recrystallized into the orthorhombic crystal phase. The results in this work indicate that the rapid compression can inhibit the PPS melt from being crystalized, so, it is a way to prepare amorphous PPS bulk. Since the solidification of polymer melt is realized by increasing pressure instead of quenching and is not limited by polymer thermal conductivity, it is a promising way to prepare amorphous polymer bulks with large size.
-
Keywords:
- pressure-induced solidification /
- amorphous polyphenylene sulfide /
- glass transition /
- crystallization
[1] 吕军 2006 博士学位论文 (成都: 四川大学)
Lü J 2006 Ph. D. Dissertation (Chengdu: Sichuan University) (in Chinese)
[2] Cheng S Z D, Wu Z Q, Wunderlich B 1987 Macromolecules 20 2802Google Scholar
[3] Lu S X, Cebe P 1996 J. Appl. Polym. Sci. 61 473Google Scholar
[4] Mao H K, Hemley R J 2007 Proc. Natl. Acad. Sci. U.S.A. 104 9114Google Scholar
[5] 王彪, 万同, 曾威 2012 高分子通报 10 63
Wang B, Wan T, Zeng W 2012 Polym. Bull. 10 63
[6] Mei Z, Chung D D L 2000 Int. J. Adhes. Adhes. 20 273Google Scholar
[7] Yang Y Q, Duan H J, Zhang G, Long S R, Yang J, Wang X J 2013 J. Polym. Res. 20 198Google Scholar
[8] Lü J, Huang R, Oh I K 2007 Macromol. Chem. Phys. 208 405Google Scholar
[9] Schultze J D, Böhning M, Springer J 1993 Makromol. Chem. 194 339Google Scholar
[10] Lu S X, Cebe P, Capel M 1997 Macromolecules 30 6243Google Scholar
[11] Lu S X, Cebe P 1996 Polymer 37 4857Google Scholar
[12] Yang X T, Tang L, Guo Y Q, Liang C B, Zhang Q Y, Kou K C, Gu J W 2017 Composites Part A 101 237Google Scholar
[13] Huo P, Cebe P 1992 Colloid. Polym. Sci. 270 840Google Scholar
[14] Hong S M, Chen L Y, Liu X R, Wu X H, Su L 2005 Rev. Sci. Instrum. 76 053905Google Scholar
[15] Liu X R, Zhang L J, Yuan C S, Jia R, Shao C G, Wang M Y, Hong S M 2018 Polymers 10 847Google Scholar
[16] Liu X R, Jia R, Zhang D D, Yuan C S, Shao C G, Hong S M 2018 J. Phys. Condens. Matter 30 154001Google Scholar
[17] Hong S M, Liu X R, Su L, Huang D H, Li L B 2006 J. Phys. D: Appl. Phys. 39 3684Google Scholar
[18] Yuan C S, Hong S M, Li X X, Shen R, He Z, Lv S J, Liu X R, Lv J, Xi D K 2011 J. Phys. D: Appl. Phys. 44 165405Google Scholar
[19] Zhang R C, Li R, Lu A, Jin Z J, Liu B Q, Xu Z B 2013 Polym. Int. 62 449Google Scholar
[20] Zhang L J, Ren Y, Liu X R, Han F, Lutterodt K E, Wang H Y, He Y L, Wang J L, Zhao Y, Yang W G 2018 Sci. Rep. 8 4558Google Scholar
-
图 7 原始粉末和613 K温度下快压凝固的聚苯硫醚样品的MDSC曲线 (a)反映玻璃化转变的可逆信号(内插图为急冷法制备的聚苯硫醚非晶薄膜的DSC曲线[19]); (b)反映晶化过程的不可逆信号
Figure 7. MDSC traces of PPS powder and amorphous PPS sample which is rapidly solidified at 613 K: (a) Reversible curve of glass transition; (b) irreversible curve of crystallization. The inset in panel (a) is the DSC trace of amorphous PPS which is solidified by rapidly quenching[19].
表 1 快压凝固的聚苯硫醚样品的热力学参数
Table 1. Thermal dynamics parameters of PPS samples which is solidified by rapid compression.
Sample No. Tg/K Tonset/K Tc/K Tend/K ΔHc/J·g–1 ΔT = Tonset – Tg/K 原始粉末 344.0 — — — — — 563 K快压凝固样品 320.3 354.0 363.0 379.0 10.4 33.7 573 K快压凝固样品 321.0 351.0 360.6 373.8 12.7 30.0 583 K快压凝固样品 320.5 352.0 360.6 368.5 20.8 31.5 603 K快压凝固样品 318.3 352.0 361.2 367.0 24.3 33.7 613 K快压凝固样品 318.0 350.0 362.0 367.8 27.0 32.0 急冷法非晶薄膜[19] 358.0 — 388.0 — — — 注: 玻璃化转变温度Tg; 结晶起始温度Tonset; 晶化峰峰值Tc; 结晶结束温度Tend; 晶化热焓ΔHc; 过冷液相区宽度ΔT. -
[1] 吕军 2006 博士学位论文 (成都: 四川大学)
Lü J 2006 Ph. D. Dissertation (Chengdu: Sichuan University) (in Chinese)
[2] Cheng S Z D, Wu Z Q, Wunderlich B 1987 Macromolecules 20 2802Google Scholar
[3] Lu S X, Cebe P 1996 J. Appl. Polym. Sci. 61 473Google Scholar
[4] Mao H K, Hemley R J 2007 Proc. Natl. Acad. Sci. U.S.A. 104 9114Google Scholar
[5] 王彪, 万同, 曾威 2012 高分子通报 10 63
Wang B, Wan T, Zeng W 2012 Polym. Bull. 10 63
[6] Mei Z, Chung D D L 2000 Int. J. Adhes. Adhes. 20 273Google Scholar
[7] Yang Y Q, Duan H J, Zhang G, Long S R, Yang J, Wang X J 2013 J. Polym. Res. 20 198Google Scholar
[8] Lü J, Huang R, Oh I K 2007 Macromol. Chem. Phys. 208 405Google Scholar
[9] Schultze J D, Böhning M, Springer J 1993 Makromol. Chem. 194 339Google Scholar
[10] Lu S X, Cebe P, Capel M 1997 Macromolecules 30 6243Google Scholar
[11] Lu S X, Cebe P 1996 Polymer 37 4857Google Scholar
[12] Yang X T, Tang L, Guo Y Q, Liang C B, Zhang Q Y, Kou K C, Gu J W 2017 Composites Part A 101 237Google Scholar
[13] Huo P, Cebe P 1992 Colloid. Polym. Sci. 270 840Google Scholar
[14] Hong S M, Chen L Y, Liu X R, Wu X H, Su L 2005 Rev. Sci. Instrum. 76 053905Google Scholar
[15] Liu X R, Zhang L J, Yuan C S, Jia R, Shao C G, Wang M Y, Hong S M 2018 Polymers 10 847Google Scholar
[16] Liu X R, Jia R, Zhang D D, Yuan C S, Shao C G, Hong S M 2018 J. Phys. Condens. Matter 30 154001Google Scholar
[17] Hong S M, Liu X R, Su L, Huang D H, Li L B 2006 J. Phys. D: Appl. Phys. 39 3684Google Scholar
[18] Yuan C S, Hong S M, Li X X, Shen R, He Z, Lv S J, Liu X R, Lv J, Xi D K 2011 J. Phys. D: Appl. Phys. 44 165405Google Scholar
[19] Zhang R C, Li R, Lu A, Jin Z J, Liu B Q, Xu Z B 2013 Polym. Int. 62 449Google Scholar
[20] Zhang L J, Ren Y, Liu X R, Han F, Lutterodt K E, Wang H Y, He Y L, Wang J L, Zhao Y, Yang W G 2018 Sci. Rep. 8 4558Google Scholar
Catalog
Metrics
- Abstract views: 9082
- PDF Downloads: 80
- Cited By: 0