-
With energy-saving and emission-reduction have become the theme of today's social development, the theoretical design and research of novel transparent heat insulation materials for windows, which can save energy and improve the comprehensive utilization efficiency of solar energy, are particularly crucial. In this paper, a calculation method based on DFT(density functional theory) is used to study the lattice parameters (the geometric structure of h-WO3 crystal was optimized by calculation) electronic band structure, formation energy, and optical properties of pure hexagonal phase tungsten trioxide(h-WO3) before and after doping with Tl. The calculated results indicate that the lattice volume increases and the total system energy decreases to a negative value after Tl-doped h-WO3, while the system has better stability; The electron band structure changes greatly after doping, but the material still maintains n-type conductivity. In the meantime, the optical properties of the material also changed, h-WO3 had no near-infrared absorption performance before Tl-doping, and Tl0.33WO3 after Tl-doped had strong near-infrared absorption performance. On this basis, the solar radiation shielding performance of h-WO3 before and after Tl doping has been studied. The results show that pure h-WO3 has no solar radiation shielding performance, while Tl0.33WO3 thin films after Tl-doped h-WO3 have high transparency in visible light region and strong absorption in near infrared radiation. The calculation results provide a theoretical basis for the application of transparent thermal insulating material for windows of Tl-doped h-WO3. -
Keywords:
- first-principles /
- Tl-doped /
- h-WO3 /
- optical properties
[1] Saito M 1997 Convertec 25 7
[2] Muromachi T, Tsujino T, Kamitani K, Maeda K 2006 J. Sol-Gel Sci. Technol. 40 267
Google Scholar
[3] Xiao L H, Su Y C, Qiu W, Liu Y K, Ran J Y, Wu J M, Lu F H, Shao F, Tang D S, Peng P 2016 Ceram. Int. 42 14278
Google Scholar
[4] Xiao L H, Su Y C, Ran J Y, Liu Y K, Qiu W, Wu J M, Lu F H, Shao F, Tang D S, Peng P 2016 J. Appl. Phys. 119 164903
Google Scholar
[5] Xiao L H, Su Y C, Chen H Y, Liu S, Jiang M, Peng P, Liu S 2011 Appl. Phys. Lett. 99 061906
Google Scholar
[6] Xiao L H, Su Y C, Qiu W, Ran J Y, Liu Y K, Wu J M, Lu F H, Shao F, Peng P 2016 Appl. Phys. Lett. 109 193906
Google Scholar
[7] Takeda H, Adachi K 2007 J. Am. Ceram. Soc. 90 4059
[8] Yao Y, Zhang L, Chen Z, Cao C, Gao Y, Luo H 2018 Ceram. Int. 44 13469
Google Scholar
[9] Mattox T M, Bergerud A, Agrawal A, Milliron D. J 2014 Chem. Mater. 26 1779
Google Scholar
[10] Guo C S, Yin S, Yan M., Sato T 2011 J. Mater. Chem 21 5099
Google Scholar
[11] Guo C S, Yin S, Sato T 2012 J. Am. Ceram. Soc. 95 1634
Google Scholar
[12] Guo C S, Yin S, Dong Q 2013 J. Nanosci. Nanotechnol. 13 3236
Google Scholar
[13] Adachi K, Asahi T 2012 J. Mater. Res. 27 965
Google Scholar
[14] Yu Z Y, Yao Y J, Yao J N, Zhang L M, Chen Z, Gao Y F, Luo H J 2017 J. Mater. Chem. A 5 6019
Google Scholar
[15] Lee J S, Liu H C, Peng G D, Tseng Y 2017 J. Cryst. Growth 465 27
Google Scholar
[16] Yang C X, Chen J F, Zeng X F, Cheng D J, Cao D P 2014 Ind. Eng. Chem. Res. 53 17981
Google Scholar
[17] Yang C X, Chen J F, Zeng X F, Cheng D J, Huang H F, Cao D P 2016 Nanotechnology 27 075203
Google Scholar
[18] Lee Y, Lee T, Jang W, Soon A 2016 Chem. Mater. 28 4528
Google Scholar
[19] Yoshio S, Adachi K 2018 Mater. Res. Express 6 026548
Google Scholar
[20] Xu Q Y, Xiao L H, Ran J Y, Tursun R, Zhou G D, Deng L L, Tang D S, Shu Q W, Qin J Y, Lu G S, Peng P 2018 J. Appl. Phys. 124 193102
Google Scholar
[21] McColm I J, Steadman R, Wilson S J 1978 J. Solid State Chem. 23 33
Google Scholar
[22] Gao T, Jelle B P 2013 J. Phys. Chem. C 117 13753
Google Scholar
[23] Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys. Condens. Matter. 14 2717
Google Scholar
[24] Perdew J P, Chevary J A, Vosko S H, Jackson K A, PedersonM R, Singh D J, Fiolhais C 1992 Phys. Rev. B 46 6671
[25] Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
Google Scholar
[26] He Y, Wu Z, Fu L, Li C, Miao Y, Cao L, Fan H, Zou B 2003 Chem. Mater. 15 4039
Google Scholar
[27] Bechinger C, Wirth E, Leiderer P 1996 Appl. Phys. Lett. 68 2834
Google Scholar
[28] Barton D G, Shtein M, Wilson R D, Soled S L, Iglesia E 1999 J. Phys. Chem. B 103 630
Google Scholar
[29] Gonzalez-Borrero P P, Sato F, Medina A N, Baesso M L, Bento A C, Baldissera G, Persson C, Niklasson G A, Granqvist C G, Ferreira da Silva A 2010 Appl. Phys. Lett. 96 061909
Google Scholar
[30] Liu J X, Ando Y, Dong X L, Shi F, Yin S, Adachi K, Chonan T, Tanaka A, Sato T, 2010 J. Solid State Chem. 183 2456
Google Scholar
[31] Dostal A, Kauschka G, Reddy S J, Scholz F 1996 J. Electroanal. Chem. 406 155
Google Scholar
[32] Gerand B, Novogorocki G, Guenot J, Figlarz M, 1979 J. Solid State Chem. 29 429
Google Scholar
[33] Migas D B, Shaposhnikov V L, Rodin V N, Borisenko V E 2010 J. Appl. Phys. 108 093713
Google Scholar
[34] 徐金荣, 王影, 朱兴凤, 李平, 张莉 2012 61 207103
Google Scholar
Xu J R, Wang Y, Zhu X F, Li P, Zhang L 2012 Acta Phys. Sin. 61 207103
Google Scholar
[35] 周诗文, 彭平, 陈文钦, 庾名槐, 郭惠, 袁珍 2019 68 037101
Google Scholar
Zhou S W, Peng P, Chen W Q, Yu M, H, Guo H, Yuan Z 2019 Acta Phys. Sin. 68 037101
Google Scholar
[36] Granqvist C G 2012 Sol. Energy Mater. Sol. Cells 99 1
Google Scholar
[37] Kamal H, Akl A A, Abdel-Hady K 2004 Physica B 349 192
Google Scholar
[38] 沈学础 1992 半导体光学性质 (北京: 科学出版社) 第 24 页
Shen X C 1992 Optical Property of Semiconductor (Beijing: Science Press) p24 (in Chinese)
[39] 褚君浩 2005 窄禁带半导体物理学 (北京: 科学出版社) 第 165 页
Chu J H 2005 Physics of Narrow Gap Semiconductors (Beijing: Science Press) (in Chinese)
[40] Guo C S, Yin S, Huang L J, Yang L, Sato T 2011 Chem. Commun. 47 8853
Google Scholar
-
表 1 Tl掺杂六方相WO3前、后的晶格参数、带隙与形成能
Table 1. Lattice parameters, band gap and formation energy of pure h-WO3 before and after Tl-doped
-
[1] Saito M 1997 Convertec 25 7
[2] Muromachi T, Tsujino T, Kamitani K, Maeda K 2006 J. Sol-Gel Sci. Technol. 40 267
Google Scholar
[3] Xiao L H, Su Y C, Qiu W, Liu Y K, Ran J Y, Wu J M, Lu F H, Shao F, Tang D S, Peng P 2016 Ceram. Int. 42 14278
Google Scholar
[4] Xiao L H, Su Y C, Ran J Y, Liu Y K, Qiu W, Wu J M, Lu F H, Shao F, Tang D S, Peng P 2016 J. Appl. Phys. 119 164903
Google Scholar
[5] Xiao L H, Su Y C, Chen H Y, Liu S, Jiang M, Peng P, Liu S 2011 Appl. Phys. Lett. 99 061906
Google Scholar
[6] Xiao L H, Su Y C, Qiu W, Ran J Y, Liu Y K, Wu J M, Lu F H, Shao F, Peng P 2016 Appl. Phys. Lett. 109 193906
Google Scholar
[7] Takeda H, Adachi K 2007 J. Am. Ceram. Soc. 90 4059
[8] Yao Y, Zhang L, Chen Z, Cao C, Gao Y, Luo H 2018 Ceram. Int. 44 13469
Google Scholar
[9] Mattox T M, Bergerud A, Agrawal A, Milliron D. J 2014 Chem. Mater. 26 1779
Google Scholar
[10] Guo C S, Yin S, Yan M., Sato T 2011 J. Mater. Chem 21 5099
Google Scholar
[11] Guo C S, Yin S, Sato T 2012 J. Am. Ceram. Soc. 95 1634
Google Scholar
[12] Guo C S, Yin S, Dong Q 2013 J. Nanosci. Nanotechnol. 13 3236
Google Scholar
[13] Adachi K, Asahi T 2012 J. Mater. Res. 27 965
Google Scholar
[14] Yu Z Y, Yao Y J, Yao J N, Zhang L M, Chen Z, Gao Y F, Luo H J 2017 J. Mater. Chem. A 5 6019
Google Scholar
[15] Lee J S, Liu H C, Peng G D, Tseng Y 2017 J. Cryst. Growth 465 27
Google Scholar
[16] Yang C X, Chen J F, Zeng X F, Cheng D J, Cao D P 2014 Ind. Eng. Chem. Res. 53 17981
Google Scholar
[17] Yang C X, Chen J F, Zeng X F, Cheng D J, Huang H F, Cao D P 2016 Nanotechnology 27 075203
Google Scholar
[18] Lee Y, Lee T, Jang W, Soon A 2016 Chem. Mater. 28 4528
Google Scholar
[19] Yoshio S, Adachi K 2018 Mater. Res. Express 6 026548
Google Scholar
[20] Xu Q Y, Xiao L H, Ran J Y, Tursun R, Zhou G D, Deng L L, Tang D S, Shu Q W, Qin J Y, Lu G S, Peng P 2018 J. Appl. Phys. 124 193102
Google Scholar
[21] McColm I J, Steadman R, Wilson S J 1978 J. Solid State Chem. 23 33
Google Scholar
[22] Gao T, Jelle B P 2013 J. Phys. Chem. C 117 13753
Google Scholar
[23] Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys. Condens. Matter. 14 2717
Google Scholar
[24] Perdew J P, Chevary J A, Vosko S H, Jackson K A, PedersonM R, Singh D J, Fiolhais C 1992 Phys. Rev. B 46 6671
[25] Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
Google Scholar
[26] He Y, Wu Z, Fu L, Li C, Miao Y, Cao L, Fan H, Zou B 2003 Chem. Mater. 15 4039
Google Scholar
[27] Bechinger C, Wirth E, Leiderer P 1996 Appl. Phys. Lett. 68 2834
Google Scholar
[28] Barton D G, Shtein M, Wilson R D, Soled S L, Iglesia E 1999 J. Phys. Chem. B 103 630
Google Scholar
[29] Gonzalez-Borrero P P, Sato F, Medina A N, Baesso M L, Bento A C, Baldissera G, Persson C, Niklasson G A, Granqvist C G, Ferreira da Silva A 2010 Appl. Phys. Lett. 96 061909
Google Scholar
[30] Liu J X, Ando Y, Dong X L, Shi F, Yin S, Adachi K, Chonan T, Tanaka A, Sato T, 2010 J. Solid State Chem. 183 2456
Google Scholar
[31] Dostal A, Kauschka G, Reddy S J, Scholz F 1996 J. Electroanal. Chem. 406 155
Google Scholar
[32] Gerand B, Novogorocki G, Guenot J, Figlarz M, 1979 J. Solid State Chem. 29 429
Google Scholar
[33] Migas D B, Shaposhnikov V L, Rodin V N, Borisenko V E 2010 J. Appl. Phys. 108 093713
Google Scholar
[34] 徐金荣, 王影, 朱兴凤, 李平, 张莉 2012 61 207103
Google Scholar
Xu J R, Wang Y, Zhu X F, Li P, Zhang L 2012 Acta Phys. Sin. 61 207103
Google Scholar
[35] 周诗文, 彭平, 陈文钦, 庾名槐, 郭惠, 袁珍 2019 68 037101
Google Scholar
Zhou S W, Peng P, Chen W Q, Yu M, H, Guo H, Yuan Z 2019 Acta Phys. Sin. 68 037101
Google Scholar
[36] Granqvist C G 2012 Sol. Energy Mater. Sol. Cells 99 1
Google Scholar
[37] Kamal H, Akl A A, Abdel-Hady K 2004 Physica B 349 192
Google Scholar
[38] 沈学础 1992 半导体光学性质 (北京: 科学出版社) 第 24 页
Shen X C 1992 Optical Property of Semiconductor (Beijing: Science Press) p24 (in Chinese)
[39] 褚君浩 2005 窄禁带半导体物理学 (北京: 科学出版社) 第 165 页
Chu J H 2005 Physics of Narrow Gap Semiconductors (Beijing: Science Press) (in Chinese)
[40] Guo C S, Yin S, Huang L J, Yang L, Sato T 2011 Chem. Commun. 47 8853
Google Scholar
Catalog
Metrics
- Abstract views: 10143
- PDF Downloads: 159
- Cited By: 0