Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Link prediction model based on dynamic network representation

Han Zhong-Ming Li Sheng-Nan Zheng Chen-Ye Duan Da-Gao Yang Wei-Jie

Citation:

Link prediction model based on dynamic network representation

Han Zhong-Ming, Li Sheng-Nan, Zheng Chen-Ye, Duan Da-Gao, Yang Wei-Jie
PDF
HTML
Get Citation
  • Link prediction is an important issue in network analysis tasks, which aims at detecting missing, spurious or evolving links in a network, based on the topology information of the network and/or the attributes of the nodes. It has been applied to many real-world applications, such as information integration, social network analysis, recommendation systems, and bioinformatics. Existing link prediction methods focus on static networks and ignore the transmission of dynamic information in the network. However, many graphs in practical applications are dynamic and evolve constantly over time. How to capture time information in a dynamic network and improve the accuracy of link prediction remains a conspicuous challenge. To tackle these challenges, we propose a dynamic network representation based link prediction model, named DNRLP. DNRLP can be mainly divided into two modules: a representation learning module on dynamic network and a link prediction module, where the representation learning module is composed of a node information dynamic update unit and a node neighborhood update unit. Node information dynamic update unit leverages the benefits of the long short-term memory (LSTM) in capturing time information and uses a Time Interval based Filter Unit (TIFU) to introduce time interval information between two links, while for the node neighborhood update unit we present a random walk algorithm based on connection strength to simulate the diffusion of dynamic information. Through the above two parts, the model can obtain the node representation at the new moment, then link prediction is performed by the link prediction module by measuring the similarity between the node representations. The experiment uses MRR and Recall@k indicators to evaluate performance of model on four public dynamic network datasets. The experiments demonstrate the effectiveness and the credibility of the proposed model in link prediction tasks as compared with the comparison models, the MNR index of the DNRLP is increased by 30.8%. The model proposed in this paper not only learns the dynamic information in the network, but also considers its influence on neighbors and the impact of time interval on information update. Therefore, the model has learned more abundant dynamic information and has obvious advantages for link prediction tasks.
      Corresponding author: Han Zhong-Ming, hanzhongming@btbu.edu.cn
    • Funds: Project supported by the Natural Science Foundation of Beijing, China (Grant No. 4172016) and the General Project of Beijing Philosophy and Social Science Foundation (Grant No. 14ZHB006)
    [1]

    Borgatti S P, Mehra A, Brass D J, Labianca G 2009 Science 323 892Google Scholar

    [2]

    Senator T E 2005 SIGKDD Explor. Newsl. 7 76Google Scholar

    [3]

    Newman M E 2001 Physical review E 64 025102Google Scholar

    [4]

    Adamic L A, Adar E 2003 Social Networks 25 211Google Scholar

    [5]

    Fouss F, Pirotte A, Renders J M, Saerens M 2007 IEEE Transactions on Knowledge and Data Engineering 19 355Google Scholar

    [6]

    Al Hasan M, Zaki M J 2011 Social Network Data Analytics (Boston: Springer) p243

    [7]

    Burges C J 1998 Data Mining and Knowledge Discovery 2 121Google Scholar

    [8]

    Freno A, Garriga G, Keller M 2011 Proceedings of the 25th Neural Information Processing Systems Workshop on Choice Models and Preference Learning Granada, Spain, December 12−17, 2011 p1

    [9]

    Hoseini E, Hashemi S, Hamzeh A 2012 Proceedings of the 26th International Conference on Advanced Information Networking and Applications Workshops Fukuoka, Japan, March 26−29, 2012 p795

    [10]

    Xu Z, Pu C, Sharafat R R, Li L, Yang J 2017 Chin. Phys. B 26 018902Google Scholar

    [11]

    Lai D R, Shu X, Nardini C 2017 Chin. Phys. B 26 038902Google Scholar

    [12]

    Kovacs I A, Luck K, Spirohn K, Wang Y, Pollis C, Schlabach S, Bian W T, Kim D K, Kishore N, Hao T, Calderwood M A, Vidal M, Barabasi A L 2019 Nat. Commun. 10 1240Google Scholar

    [13]

    Pech R, Hao D, Lee Y L, Yuan Y, Zhou T 2019 Physica A: Statistical Mechanics and its Applications 528 121319Google Scholar

    [14]

    Zhang M H, Chen Y X 2018 Proceedings of the 32nd Advances in Neural Information Processing Systems Montreal, Canada, December 2−8, 2018 p5165

    [15]

    Scarselli F, Gori M, Tsoi A C, Hagenbuchner M, Monfardini G 2008 IEEE Transactions on Neural Networks 20 61Google Scholar

    [16]

    Ostapuk N, Yang J, Cudré-Mauroux P 2019 Proceedings of the 28th The World Wide Web Conference San Francisco, American, MAY 13−17, 2019 p1398

    [17]

    Gal Y, Islam R, Ghahramani Z 2017 Proceedings of the 34th International Conference on Machine Learning Sydney, Australia, August 6−11, 2017 p1183

    [18]

    Gal Y, Ghahramani Z 2016 Proceedings of the 33rd International Conference on Machine Learning New York, American, June 19-24, 2016 p1050

    [19]

    Finn C, Abbeel P, Levine S 2017 Proceedings of the 34th International Conference on Machine Learning Sydney, Australia, August 6−11, 2017 p1126

    [20]

    Cui P, Wang X, Pei J, Zhu W W 2018 IEEE Transactions on Knowledge and Data Engineering 31 833Google Scholar

    [21]

    Perozzi B, Al-Rfou R, Skiena S 2014 Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining New York, American, August 24−27, 2014 p701

    [22]

    Tang J, Qu M, Wang M Z, Zhang M, Yan J, Mei Q Z 2015 Proceedings of the 24th international conference on world wide web Florence, Italy, May 18−22, 2015 p1067

    [23]

    Grover A, Leskovec J 2016 Proceedings of the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining San Francisco, American, August 13−17, 2016 p855

    [24]

    Wang D X, Cui P, Zhu W W 2016 Proceedings of the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining San Francisco, American, August 13−17, 2016 p1225

    [25]

    Kipf T N, Welling M 2016 arXiv: 1609.02907 [cs.LG]

    [26]

    Will H, Ying Z T, Jure L 2017 Proceedings of the 31st Conference and Workshop on Neural Information Processing Systems Long Beach, American, December 4−10, 2017 p1024

    [27]

    Schaub M T, Delvenne J-C, Lambiotte R, Barahona M 2019 Physical Review E 99 062308Google Scholar

    [28]

    Srijan Kumar, Zhang X K , Jure Leskovec 2018 arXiv: 1812.02289 [cs.SI]

    [29]

    李志宇, 梁循, 徐志明, 齐金山, 陈燕方 2017 计算机学报 40 805Google Scholar

    LI Z Y, Liang X, Xu Z M, Qi J S, Chen Y F 2017 Chinese Journal of Computers 40 805Google Scholar

    [30]

    Goyal P, Kamra N, He X R, Liu Y 2018 arXiv: 1805.11273 [cs.SI]

    [31]

    Chen J Y, Zhang J, Xu X H, Fu C B, Zhang D, Zhang Q P, Xuan Q 2019 IEEE T SYST MAN CY-S1 49 1

    [32]

    Hochreiter S, Schmidhuber J 1997 Neural computation 9 1735Google Scholar

    [33]

    Li T S, Zhang J W, Yu P S, Zhang Y, Yan Y H 2018 IEEE Access 6 29219Google Scholar

    [34]

    Dey R, Salemt F M 2017 Proceedings of the 60th International Midwest Symposium on Circuits and Systems (MWSCAS) Boston, American, August 6−9, 2017 p1597

    [35]

    Lei K, Qin M, Bai B, Zhang G, Yang M 2019 Proceedings of the IEEE INFOCOM 2019-IEEE Conference on Computer Communications Paris, France, April 29−May 2, 2019 p388

    [36]

    Goodfellow I J, Pouget-Abadie J, Mirza M, Bing X, Warde-Farley D, Ozair S, Courville A, Bengio Y 2014 Proceedings of the 28th Conference on Neural Information Processing Systems Montreal, Canada, December 8−13, 2014 p2672

    [37]

    Chang S Y, Zhang Y, Tang J L, Yin D W, Chang Y, Hasegawa-Johnson M A, Huang T S 2017 Proceedings of the 26th International Conference on World Wide Web Perth, Australia, April 3−7, 2017 p381

    [38]

    Opsahl T, Panzarasa P 2009 Social Networks 31 155Google Scholar

    [39]

    Sun J, Kunegis J, Staab S 2016 Proceedings of the 16th International Conference on Data Mining Workshops Barcelona, Spain, December 12−15, 2016 p128

    [40]

    Klimt B, Yang Y M 2004 Proceedings of the 15th European Conference on Machine Learning Pisa, Italy, September 20−24, 2004 p3201

  • 图 1  动态网络示意图

    Figure 1.  Schematic diagram of dynamic network.

    图 2  基于动态网络表示的链接预测模型结构

    Figure 2.  The architecture of link prediction model based on dynamic network representation.

    图 3  基于时间间隔的LSTM单元

    Figure 3.  Time interval based LSTM unit.

    图 4  节点邻域采样示意图

    Figure 4.  Schematic diagram of node neighborhood sampling.

    图 5  节点邻域更新单元

    Figure 5.  Node neighborhood update unit.

    图 6  各数据集上的$ Recall@k $对比图 (a) UCI数据集; (b) DNC数据集; (b) Wikipedia数据集; (d) Enron数据集

    Figure 6.  $ Recall@k $ comparison diagram on each data set. (a) UCI dataset; (b) DNC dataset; (b) Wikipedia dataset; (d) Enron dataset

    图 7  各数据集上的$ Precision@k $对比图 (a) UCI数据集; (b) DNC数据集; (b) Wikipedia数据集; (d) Enron数据集

    Figure 7.  $ Precision@k $ comparison diagram on each data set. (a) UCI dataset; (b) DNC dataset; (b) Wikipedia dataset; (d) Enron dataset

    图 8  DNRLP模型变体的Recall@k对比图 (a) UCI数据集; (b) DNC数据集; (c) Wikipedia数据集; (d) Enron数据集

    Figure 8.  Recall@k comparison diagram of the variants of DNRLP. (a) UCI dataset; (b) DNC dataset; (c) Wikipedia dataset; (d) Enron dataset.

    图 9  不同训练率的MRR结果对比图 (a) DNC数据集; (b) Enron数据集

    Figure 9.  MRR results of different training rates. (a) DNC dataset; (b) Enron dataset

    表 1  信息扩散算法

    Table 1.  Information diffusion algorithm.

    输入: 新增链接$ {e}_{ij}\in {E}_{{\rm{new}}} $, 随机游走长度$ L $
    输出: 随机游走序列$ R $
    1) For $ {e}_{ij} $ in $ {E}_{{\rm{new}}} $ do:
    2) For $ v $ in $ {e}_{ij} $ do:
    3)  $ m=\mathrm{ }0 $
    4)  While $ m < L $ do
    5)   初始化权重分布$ P $
    6)   For $ u $ in $ {N}_{v} $ do
    7)    根据(13)式计算$ {f}_{\rm{s}}\left({u}_{\rm{u}}, {u}_{v}\right) $, 加入$ P $
    8)   End for
    9)   根据$ P $选择下一个节点$u^\prime$加入${R}_{v}$
    10)   $ m=m+1 $
    11)   $ v=u' $
    12)  End while
    13)  将$ {R}_{v} $加入$ R $
    14) End for
    15) End for
    DownLoad: CSV

    表 2  动态网络数据详细信息

    Table 2.  Dynamic network data details.

    数据集节点数边数时间/d聚类系数/%
    UCI1899598351945.68
    DNC2029392649828.90
    Wikipedia1219241228454647630.000837
    Enron384413175146311404.96
    DownLoad: CSV

    表 3  实验环境设置信息

    Table 3.  Experimental environment setup information.

    项目设置数量
    操作系统Ubuntu 16.041
    CPUIntel®i7-5280K, 6 核, 12线程1
    硬盘512GB PLEXTOR®PX-512M6Pro SSD1
    内存Kingston®8GB DDR4 24008
    重要程序包Python 3.71
    深度学习
    框架
    PyTorch1
    DownLoad: CSV

    表 4  链接预测MRR结果对比

    Table 4.  Link prediction MRR results comparison.

    方法UCIDNCWikipediaEnron
    Logistic Regression0.005 10.020 90.003 70.005 2
    SVM0.003 20.018 20.002 10.002 9
    Node2Vec0.004 70.019 70.003 50.003 9
    GCN0.015 90.048 40.010 10.017 6
    GraphSAGE0.016 30.049 70.012 00.018 3
    DynGEM0.015 70.028 40.010 80.014 7
    GCN-GAN0.020 10.050 40.014 90.021 5
    DDNE0.014 20.026 80.009 60.011 6
    DNRLP0.035 10.053 90.018 70.036 3
    DownLoad: CSV
    Baidu
  • [1]

    Borgatti S P, Mehra A, Brass D J, Labianca G 2009 Science 323 892Google Scholar

    [2]

    Senator T E 2005 SIGKDD Explor. Newsl. 7 76Google Scholar

    [3]

    Newman M E 2001 Physical review E 64 025102Google Scholar

    [4]

    Adamic L A, Adar E 2003 Social Networks 25 211Google Scholar

    [5]

    Fouss F, Pirotte A, Renders J M, Saerens M 2007 IEEE Transactions on Knowledge and Data Engineering 19 355Google Scholar

    [6]

    Al Hasan M, Zaki M J 2011 Social Network Data Analytics (Boston: Springer) p243

    [7]

    Burges C J 1998 Data Mining and Knowledge Discovery 2 121Google Scholar

    [8]

    Freno A, Garriga G, Keller M 2011 Proceedings of the 25th Neural Information Processing Systems Workshop on Choice Models and Preference Learning Granada, Spain, December 12−17, 2011 p1

    [9]

    Hoseini E, Hashemi S, Hamzeh A 2012 Proceedings of the 26th International Conference on Advanced Information Networking and Applications Workshops Fukuoka, Japan, March 26−29, 2012 p795

    [10]

    Xu Z, Pu C, Sharafat R R, Li L, Yang J 2017 Chin. Phys. B 26 018902Google Scholar

    [11]

    Lai D R, Shu X, Nardini C 2017 Chin. Phys. B 26 038902Google Scholar

    [12]

    Kovacs I A, Luck K, Spirohn K, Wang Y, Pollis C, Schlabach S, Bian W T, Kim D K, Kishore N, Hao T, Calderwood M A, Vidal M, Barabasi A L 2019 Nat. Commun. 10 1240Google Scholar

    [13]

    Pech R, Hao D, Lee Y L, Yuan Y, Zhou T 2019 Physica A: Statistical Mechanics and its Applications 528 121319Google Scholar

    [14]

    Zhang M H, Chen Y X 2018 Proceedings of the 32nd Advances in Neural Information Processing Systems Montreal, Canada, December 2−8, 2018 p5165

    [15]

    Scarselli F, Gori M, Tsoi A C, Hagenbuchner M, Monfardini G 2008 IEEE Transactions on Neural Networks 20 61Google Scholar

    [16]

    Ostapuk N, Yang J, Cudré-Mauroux P 2019 Proceedings of the 28th The World Wide Web Conference San Francisco, American, MAY 13−17, 2019 p1398

    [17]

    Gal Y, Islam R, Ghahramani Z 2017 Proceedings of the 34th International Conference on Machine Learning Sydney, Australia, August 6−11, 2017 p1183

    [18]

    Gal Y, Ghahramani Z 2016 Proceedings of the 33rd International Conference on Machine Learning New York, American, June 19-24, 2016 p1050

    [19]

    Finn C, Abbeel P, Levine S 2017 Proceedings of the 34th International Conference on Machine Learning Sydney, Australia, August 6−11, 2017 p1126

    [20]

    Cui P, Wang X, Pei J, Zhu W W 2018 IEEE Transactions on Knowledge and Data Engineering 31 833Google Scholar

    [21]

    Perozzi B, Al-Rfou R, Skiena S 2014 Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining New York, American, August 24−27, 2014 p701

    [22]

    Tang J, Qu M, Wang M Z, Zhang M, Yan J, Mei Q Z 2015 Proceedings of the 24th international conference on world wide web Florence, Italy, May 18−22, 2015 p1067

    [23]

    Grover A, Leskovec J 2016 Proceedings of the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining San Francisco, American, August 13−17, 2016 p855

    [24]

    Wang D X, Cui P, Zhu W W 2016 Proceedings of the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining San Francisco, American, August 13−17, 2016 p1225

    [25]

    Kipf T N, Welling M 2016 arXiv: 1609.02907 [cs.LG]

    [26]

    Will H, Ying Z T, Jure L 2017 Proceedings of the 31st Conference and Workshop on Neural Information Processing Systems Long Beach, American, December 4−10, 2017 p1024

    [27]

    Schaub M T, Delvenne J-C, Lambiotte R, Barahona M 2019 Physical Review E 99 062308Google Scholar

    [28]

    Srijan Kumar, Zhang X K , Jure Leskovec 2018 arXiv: 1812.02289 [cs.SI]

    [29]

    李志宇, 梁循, 徐志明, 齐金山, 陈燕方 2017 计算机学报 40 805Google Scholar

    LI Z Y, Liang X, Xu Z M, Qi J S, Chen Y F 2017 Chinese Journal of Computers 40 805Google Scholar

    [30]

    Goyal P, Kamra N, He X R, Liu Y 2018 arXiv: 1805.11273 [cs.SI]

    [31]

    Chen J Y, Zhang J, Xu X H, Fu C B, Zhang D, Zhang Q P, Xuan Q 2019 IEEE T SYST MAN CY-S1 49 1

    [32]

    Hochreiter S, Schmidhuber J 1997 Neural computation 9 1735Google Scholar

    [33]

    Li T S, Zhang J W, Yu P S, Zhang Y, Yan Y H 2018 IEEE Access 6 29219Google Scholar

    [34]

    Dey R, Salemt F M 2017 Proceedings of the 60th International Midwest Symposium on Circuits and Systems (MWSCAS) Boston, American, August 6−9, 2017 p1597

    [35]

    Lei K, Qin M, Bai B, Zhang G, Yang M 2019 Proceedings of the IEEE INFOCOM 2019-IEEE Conference on Computer Communications Paris, France, April 29−May 2, 2019 p388

    [36]

    Goodfellow I J, Pouget-Abadie J, Mirza M, Bing X, Warde-Farley D, Ozair S, Courville A, Bengio Y 2014 Proceedings of the 28th Conference on Neural Information Processing Systems Montreal, Canada, December 8−13, 2014 p2672

    [37]

    Chang S Y, Zhang Y, Tang J L, Yin D W, Chang Y, Hasegawa-Johnson M A, Huang T S 2017 Proceedings of the 26th International Conference on World Wide Web Perth, Australia, April 3−7, 2017 p381

    [38]

    Opsahl T, Panzarasa P 2009 Social Networks 31 155Google Scholar

    [39]

    Sun J, Kunegis J, Staab S 2016 Proceedings of the 16th International Conference on Data Mining Workshops Barcelona, Spain, December 12−15, 2016 p128

    [40]

    Klimt B, Yang Y M 2004 Proceedings of the 15th European Conference on Machine Learning Pisa, Italy, September 20−24, 2004 p3201

  • [1] Zhang Qiao, Tan Wei, Ning Yong-Qi, Nie Guo-Zheng, Cai Meng-qiu, Wang Jun-Nian, Zhu Hui-Ping, Zhao Yu-Qing. Prediction of Magnetic Janus Materials Based on Machine Learning and First-Principles Calculations. Acta Physica Sinica, 2024, 73(23): 230201. doi: 10.7498/aps.73.20241278
    [2] Sun Tao, Yuan Jian-Mei. Band gap prediction of perovskite materials based on transfer learning. Acta Physica Sinica, 2023, 72(21): 218901. doi: 10.7498/aps.72.20231027
    [3] Ou Xiu-Juan, Xiao Yi. Deep learning methods of predicting RNA torsion angle. Acta Physica Sinica, 2023, 72(24): 248703. doi: 10.7498/aps.72.20231069
    [4] Sun Tao, Yuan Jian-Mei. Prediction of band gap of transition metal sulfide with Janus structure by deep learning atomic feature representation method. Acta Physica Sinica, 2023, 72(2): 028901. doi: 10.7498/aps.72.20221374
    [5] Kou Wen-Bo, Dong Hao, Zou Min-Qiang, Han Jun-Yan, Jia Xi-Xi. Hybrid wavelet-based learning method of predicting effective thermal conductivities of hybrid composite materials. Acta Physica Sinica, 2021, 70(3): 030701. doi: 10.7498/aps.70.20201085
    [6] Li Jun, Li Da-Chao. Wind power time series prediction using optimized kernel extreme learning machine method. Acta Physica Sinica, 2016, 65(13): 130501. doi: 10.7498/aps.65.130501
    [7] Wang Xin-Ying, Han Min. Multivariate chaotic time series prediction using multiple kernel extreme learning machine. Acta Physica Sinica, 2015, 64(7): 070504. doi: 10.7498/aps.64.070504
    [8] Duan Jie-Ming, Shang Ming-Sheng, Cai Shi-Min, Zhang Yu-Xia. A ranking method based on self-avoiding random walk in complex networks. Acta Physica Sinica, 2015, 64(20): 200501. doi: 10.7498/aps.64.200501
    [9] Zhao Yong-Ping, Wang Kang-Kang. Chaotic time series prediction using add-delete mechanism based regularized extreme learning machine. Acta Physica Sinica, 2013, 62(24): 240509. doi: 10.7498/aps.62.240509
    [10] Wang Xin-Ying, Han Min. Multivariate chaotic time series prediction based on extreme learning machine. Acta Physica Sinica, 2012, 61(8): 080507. doi: 10.7498/aps.61.080507
    [11] Gao Guang-Yong, Jiang Guo-Ping. Prediction of multivariable chaotic time series using optimized extreme learning machine. Acta Physica Sinica, 2012, 61(4): 040506. doi: 10.7498/aps.61.040506
    [12] Ding Yi-Min, Yang Chang-Ping. The network model of mobile agents with the human mobility. Acta Physica Sinica, 2012, 61(23): 238901. doi: 10.7498/aps.61.238901
    [13] Xing Chang-Ming, Liu Fang-Ai, Xu Ru-Zhi. Exact solution for mean trapping time of random walk on a scale-free Koch network. Acta Physica Sinica, 2012, 61(20): 200503. doi: 10.7498/aps.61.200503
    [14] Dou Fei-Ling, Hu Yan-Qing, Li Yong, Fan Ying, Di Zeng-Ru. Random walks on spatial networks. Acta Physica Sinica, 2012, 61(17): 178901. doi: 10.7498/aps.61.178901
    [15] Zhang Xian, Wang Hong-Li. Selective forgetting extreme learning machine and its application to time series prediction. Acta Physica Sinica, 2011, 60(8): 080504. doi: 10.7498/aps.60.080504
    [16] Zhao Yan-Yan, Jiang Guo-Ping. Fault diagnosis for a class of output-coupling complex dynamical networks with time delay. Acta Physica Sinica, 2011, 60(11): 110206. doi: 10.7498/aps.60.110206
    [17] Lu Jing, Zhang Rong, Xu Zhen-Yuan. Phase synchronization between two adjacent nodes in amplitude coupled dynamical networks. Acta Physica Sinica, 2010, 59(9): 5949-5953. doi: 10.7498/aps.59.5949
    [18] Luo Qun, Gao Ya, Qi Ya-Nan, Wu Tong, Xu Huan, Li Li-Xiang, Yang Yi-Xian. Model reference adaptive synchronization in integration complex dynamical networks. Acta Physica Sinica, 2009, 58(10): 6809-6817. doi: 10.7498/aps.58.6809
    [19] Zhang Jun-Feng, Hu Shou-Song. Chaotic time series prediction based on multi-kernel learning support vector regression. Acta Physica Sinica, 2008, 57(5): 2708-2713. doi: 10.7498/aps.57.2708
    [20] Gao Yang, Li Li-Xiang, Peng Hai-Peng, Yang Yi-Xian, Zhang Xiao-Hong. Adaptive synchronization in united complex dynamical network with multi-links. Acta Physica Sinica, 2008, 57(4): 2081-2091. doi: 10.7498/aps.57.2081
Metrics
  • Abstract views:  8193
  • PDF Downloads:  142
  • Cited By: 0
Publishing process
  • Received Date:  29 July 2019
  • Accepted Date:  07 May 2020
  • Available Online:  25 May 2020
  • Published Online:  20 August 2020

/

返回文章
返回
Baidu
map