Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Exact solution for mean trapping time of random walk on a scale-free Koch network

Xing Chang-Ming Liu Fang-Ai Xu Ru-Zhi

Citation:

Exact solution for mean trapping time of random walk on a scale-free Koch network

Xing Chang-Ming, Liu Fang-Ai, Xu Ru-Zhi
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • As a basic dynamical process, random walk on networks is fundamental to many branches of science, and has attracted much attention. A difficult problem in the study of random walk is how to obtain the exact solution for the mean trapping time (MTT) of this process. The MTT is defined as the mean time for the walker staring from any node in the network to first reach the trap node. In this paper, we study random walk on the Koch network with a trap located at the highest degree node and calculate the solution for MTT. The accurate expression for the MTT is obtained through the recurrence relation and the structure properties of the Koch network. We confirm the correctness of the MTT result by direct numerical calculations based on the Laplacian matrix of Koch network. It can be seen from the obtained results that in the large limit of network size, the MTT increases linearly with the size of network increasing. Comparison between the MTT result of the Koch network with that of the other networks, such as complete graph, regular lattices, Sierpinski fractals, and T-graph, shows that the Koch has a high transmission efficiency.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 71171122, 90612003), the Natural Science Foundation of Shandong Province, China (Grant Nos. ZR2010FM003, 2009ZRB019PF), and the University Research and Development Program of Shandong Province, China (Grant No. J11LG11).
    [1]

    Albert R, Jeong H, Barabasi A L 1999 Nature 401 130

    [2]

    Cami A, Deo N 2008 Networks 51 211

    [3]

    Faloutsos M, Faloutsos P, Faloutsos C 1999 Comput. Commun. Rev. 29 251

    [4]

    Xu T, Chen R, He Y 2004 Int. J. Mod. Phys. B 18 2599

    [5]

    Guimerá R, Amaral L A N 2004 Eur. Phys. J. B 38 381

    [6]

    Dorogovtsev S N, Goltsev A V, Mendes J F F 2008 Rev. Mod. Phys. 80 1275

    [7]

    Spitzer F 1964 Principles of Random Walk (1st Ed.) (Princeton, N. J.: van Nostrand) p402

    [8]

    Lloyd A L, May R M 2001 Science 292 1316

    [9]

    Shlesinger M F 2006 Nature 443 281

    [10]

    Pandit S A, Amritkar R E 2001 Phys. Rev. E 63 041104

    [11]

    Noh J D, Rieger H 2004 Phys. Rev. Lett. 92 118701

    [12]

    Lee S M, Yook S H, Kim Y 2008 Physica A 387 3033

    [13]

    Fouss F, Pirotte A, Renders J, Saerens M 2007 IEEE T. Knowl. Data En. 19 355

    [14]

    Berkhin P 2005 Internet Mathematics 2 73

    [15]

    Zhang Z Z, Li X T, Lin Y, Chen G R 2011 J. Stat. Mech. 2011 08013

    [16]

    Bénichou O, Coppey M, Moreau M, Suet P H, Voituriez R 2005 Phys. Rev. Lett. 94 198101

    [17]

    Loverdo C, Bénichou O, Moreau M, Voituriez R 2008 Nat. Phys. 4 134

    [18]

    Montroll E W 1969 J. Math. Phys. 10 753

    [19]

    Kozak J J, Balakrishnan V 2002 Phys. Rev. E 65 021105

    [20]

    Kozak J J, Balakrishnan V 2002 Int. J. Bifurcation Chaos Appl. Sci. Eng. 12 2379

    [21]

    Agliari E 2008 Phys. Rev. E 77 011128

    [22]

    Zhang Z Z, Qi Y, Zhou S G, Xie W L, Guan J H 2009 Phys. Rev. E 79 021127

    [23]

    Wu S Q, Zhang Z Z, Chen G R 2011 Eur. Phys. J. B 82 91

    [24]

    Zhang Z Z, Guan J H, Xie W L, Qi Y, Zhou S G 2009 Europhys. Lett. 86 10006

    [25]

    Zhang Z Z, Zhou S G, Xie W L, Chen L C, Lin Y, Guan J H 2009 Phys. Rev. E 79 061113

    [26]

    Liu J X, Kong X M 2010 Acta Phys. Sin. 59 2244 (in Chinese) [刘甲雪, 孔祥木 2010 59 2244]

    [27]

    Zhang Z Z, Gao S Y, Chen L C, Zhou S G, Zhang H J, Gan J H 2010 J. Phys. A: Math. Theor. 43 395101

    [28]

    Zhang Z Z, Gao S Y, Xie W L 2010 Chaos 20 043112

    [29]

    Zhang Z Z, Gao S Y 2011 Euro. Phys. J. B 80 209

    [30]

    Wu B, Zhang Z Z, Chen G R 2012 J. Phys. A: Math. Theor. 45 025102

    [31]

    Newman M E J 2002 Phys. Rev. Lett. 89 208701

    [32]

    Kemeny J G, Snell J L 1976 Finite Markov Chains (lst Ed.) (New York: Springer) p210

  • [1]

    Albert R, Jeong H, Barabasi A L 1999 Nature 401 130

    [2]

    Cami A, Deo N 2008 Networks 51 211

    [3]

    Faloutsos M, Faloutsos P, Faloutsos C 1999 Comput. Commun. Rev. 29 251

    [4]

    Xu T, Chen R, He Y 2004 Int. J. Mod. Phys. B 18 2599

    [5]

    Guimerá R, Amaral L A N 2004 Eur. Phys. J. B 38 381

    [6]

    Dorogovtsev S N, Goltsev A V, Mendes J F F 2008 Rev. Mod. Phys. 80 1275

    [7]

    Spitzer F 1964 Principles of Random Walk (1st Ed.) (Princeton, N. J.: van Nostrand) p402

    [8]

    Lloyd A L, May R M 2001 Science 292 1316

    [9]

    Shlesinger M F 2006 Nature 443 281

    [10]

    Pandit S A, Amritkar R E 2001 Phys. Rev. E 63 041104

    [11]

    Noh J D, Rieger H 2004 Phys. Rev. Lett. 92 118701

    [12]

    Lee S M, Yook S H, Kim Y 2008 Physica A 387 3033

    [13]

    Fouss F, Pirotte A, Renders J, Saerens M 2007 IEEE T. Knowl. Data En. 19 355

    [14]

    Berkhin P 2005 Internet Mathematics 2 73

    [15]

    Zhang Z Z, Li X T, Lin Y, Chen G R 2011 J. Stat. Mech. 2011 08013

    [16]

    Bénichou O, Coppey M, Moreau M, Suet P H, Voituriez R 2005 Phys. Rev. Lett. 94 198101

    [17]

    Loverdo C, Bénichou O, Moreau M, Voituriez R 2008 Nat. Phys. 4 134

    [18]

    Montroll E W 1969 J. Math. Phys. 10 753

    [19]

    Kozak J J, Balakrishnan V 2002 Phys. Rev. E 65 021105

    [20]

    Kozak J J, Balakrishnan V 2002 Int. J. Bifurcation Chaos Appl. Sci. Eng. 12 2379

    [21]

    Agliari E 2008 Phys. Rev. E 77 011128

    [22]

    Zhang Z Z, Qi Y, Zhou S G, Xie W L, Guan J H 2009 Phys. Rev. E 79 021127

    [23]

    Wu S Q, Zhang Z Z, Chen G R 2011 Eur. Phys. J. B 82 91

    [24]

    Zhang Z Z, Guan J H, Xie W L, Qi Y, Zhou S G 2009 Europhys. Lett. 86 10006

    [25]

    Zhang Z Z, Zhou S G, Xie W L, Chen L C, Lin Y, Guan J H 2009 Phys. Rev. E 79 061113

    [26]

    Liu J X, Kong X M 2010 Acta Phys. Sin. 59 2244 (in Chinese) [刘甲雪, 孔祥木 2010 59 2244]

    [27]

    Zhang Z Z, Gao S Y, Chen L C, Zhou S G, Zhang H J, Gan J H 2010 J. Phys. A: Math. Theor. 43 395101

    [28]

    Zhang Z Z, Gao S Y, Xie W L 2010 Chaos 20 043112

    [29]

    Zhang Z Z, Gao S Y 2011 Euro. Phys. J. B 80 209

    [30]

    Wu B, Zhang Z Z, Chen G R 2012 J. Phys. A: Math. Theor. 45 025102

    [31]

    Newman M E J 2002 Phys. Rev. Lett. 89 208701

    [32]

    Kemeny J G, Snell J L 1976 Finite Markov Chains (lst Ed.) (New York: Springer) p210

  • [1] Han Zhong-Ming, Li Sheng-Nan, Zheng Chen-Ye, Duan Da-Gao, Yang Wei-Jie. Link prediction model based on dynamic network representation. Acta Physica Sinica, 2020, 69(16): 168901. doi: 10.7498/aps.69.20191162
    [2] Wang Li-Na, Cheng Yuan-Yuan, Zang Chen-Rui. A symbolized time series network based on seasonal-trend-loess method. Acta Physica Sinica, 2019, 68(23): 238901. doi: 10.7498/aps.68.20190794
    [3] Hu Yao-Guang, Wang Sheng-Jun, Jin Tao, Qu Shi-Xian. Biased random walks in the scale-free networks with the disassortative degree correlation. Acta Physica Sinica, 2015, 64(2): 028901. doi: 10.7498/aps.64.028901
    [4] Wu Teng-Fei, Zhou Chang-Le, Wang Xiao-Hua, Huang Xiao-Xi, Chen Zhi-Qun, Wang Rong-Bo. Microblog propagation network model based on mean-field theory. Acta Physica Sinica, 2014, 63(24): 240501. doi: 10.7498/aps.63.240501
    [5] Li Yu-Shan, Lü Ling, Liu Ye, Liu Shuo, Yan Bing-Bing, Chang Huan, Zhou Jia-Nan. Spatiotemporal chaos synchronization of complex networks by Backstepping design. Acta Physica Sinica, 2013, 62(2): 020513. doi: 10.7498/aps.62.020513
    [6] Liu Jin-Liang. Research on synchronization of complex networks with random nodes. Acta Physica Sinica, 2013, 62(4): 040503. doi: 10.7498/aps.62.040503
    [7] Zhou Ting-Ting, Jin Ning-De, Gao Zhong-Ke, Luo Yue-Bin. Limited penetrable visibility graph for establishing complex network from time series. Acta Physica Sinica, 2012, 61(3): 030506. doi: 10.7498/aps.61.030506
    [8] Gao Zhong-Ke, Jin Ning-De, Yang Dan, Zhai Lu-Sheng, Du Meng. Complex networks from multivariate time series for characterizing nonlinear dynamics of two-phase flow patterns. Acta Physica Sinica, 2012, 61(12): 120510. doi: 10.7498/aps.61.120510
    [9] Gao Xiang-Yun, An Hai-Zhong, Fang Wei. Research on fluctuation of bivariate correlation of time series based on complex networks theory. Acta Physica Sinica, 2012, 61(9): 098902. doi: 10.7498/aps.61.098902
    [10] Dou Fei-Ling, Hu Yan-Qing, Li Yong, Fan Ying, Di Zeng-Ru. Random walks on spatial networks. Acta Physica Sinica, 2012, 61(17): 178901. doi: 10.7498/aps.61.178901
    [11] Cui Ai-Xiang, Fu Yan, Shang Ming-Sheng, Chen Duan-Bing, Zhou Tao. Emergence of local structures in complex network:common neighborhood drives the network evolution. Acta Physica Sinica, 2011, 60(3): 038901. doi: 10.7498/aps.60.038901
    [12] Jiang Zhi-Hong, Wang Hui, Gao Chao. A evolving network model generated by random walk and policy attachment. Acta Physica Sinica, 2011, 60(5): 058903. doi: 10.7498/aps.60.058903
    [13] Liu Jia-Xue, Kong Xiang-Mu. Establishment and structure properties of the scale-free Koch network. Acta Physica Sinica, 2010, 59(4): 2244-2249. doi: 10.7498/aps.59.2244
    [14] Li Tao, Pei Wen-Jiang, Wang Shao-Ping. Optimal traffic routing strategy on scale-free complex networks. Acta Physica Sinica, 2009, 58(9): 5903-5910. doi: 10.7498/aps.58.5903
    [15] Chen Hua-Liang, Liu Zhong-Xin, Chen Zeng-Qiang, Yuan Zhu-Zhi. Research on one weighted routing strategy for complex networks. Acta Physica Sinica, 2009, 58(9): 6068-6073. doi: 10.7498/aps.58.6068
    [16] Lü Ling, Zhang Chao. Chaos synchronization of a complex network with different nodes. Acta Physica Sinica, 2009, 58(3): 1462-1466. doi: 10.7498/aps.58.1462
    [17] Wang Dan, Yu Hao, Jing Yuan-Wei, Jiang Nan, Zhang Si-Ying. Study on the congestion in complex network based on traffic awareness algorithm. Acta Physica Sinica, 2009, 58(10): 6802-6808. doi: 10.7498/aps.58.6802
    [18] Song Qing-Song, Feng Zu-Ren, Li Ren-Hou. Multiple clusters echo state network for chaotic time series prediction. Acta Physica Sinica, 2009, 58(7): 5057-5064. doi: 10.7498/aps.58.5057
    [19] Xu Dan, Li Xiang, Wang Xiao-Fan. An investigation on local area control of virus spreading in complex networks. Acta Physica Sinica, 2007, 56(3): 1313-1317. doi: 10.7498/aps.56.1313
    [20] Li Ji, Wang Bing-Hong, Jiang Pin-Qun, Zhou Tao, Wang Wen-Xu. Growing complex network model with acceleratingly increasing number of nodes. Acta Physica Sinica, 2006, 55(8): 4051-4057. doi: 10.7498/aps.55.4051
Metrics
  • Abstract views:  6782
  • PDF Downloads:  723
  • Cited By: 0
Publishing process
  • Received Date:  31 March 2012
  • Accepted Date:  20 April 2012
  • Published Online:  05 October 2012

/

返回文章
返回
Baidu
map