Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Extracting atmospheric turbulence phase using deep convolutional neural network

Xu Qi-Wei Wang Pei-Pei Zeng Zhen-Jia Huang Ze-Bin Zhou Xin-Xing Liu Jun-Min Li Ying Chen Shu-Qing Fan Dian-Yuan

Citation:

Extracting atmospheric turbulence phase using deep convolutional neural network

Xu Qi-Wei, Wang Pei-Pei, Zeng Zhen-Jia, Huang Ze-Bin, Zhou Xin-Xing, Liu Jun-Min, Li Ying, Chen Shu-Qing, Fan Dian-Yuan
科大讯飞翻译 (iFLYTEK Translation)
PDF
HTML
Get Citation
  • When a light beam transmits in free space, it is easily affected by atmospheric turbulence. The effect on transmitted light is equivalent to adding a random noise phase to it, which leads its transmission quality to deteriorate. The method of improving the quality of transmitted beams is usually to compensate for the phase distortion at the receiver by adding reverse turbulence phase, and the premise of this method is to obtain the turbulence phase carried by the distorted beam. The adaptive optics system is the most common way to extract the phase information. However, it is inefficient to be applied to varying turbulence environments due to the fact that a wave-front sensor and complex optical system are usually contained. Deep convolutional neural network (CNN) that can directly capture feature information from images is widely used in computer vision, language processing, optical information processing, etc. Therefore, in this paper proposed is a turbulence phase information extraction scheme based on the CNN, which can quickly and accurately extract the turbulence phase from the intensity patterns affected by atmosphere turbulence. The CNN model in this paper consists of 17 layers, including convolutional layers, pooling layers and deconvolutional layers. The convolutional layers and pooling layers are used to extract the turbulent phase from the feature image, which is the core structure of the network. The function of the deconvolutional layers is to visualize the extracted turbulence information and output the final predicted turbulence phase. After learning a huge number of samples, the loss function value of CNN converges to about 0.02, and the average loss function value on the test set is lower than 0.03. The trained CNN model has a good generalization capability and can directly extract the turbulent phase according to the input light intensity pattern. Using an I5-8500 CPU, the average time to predict the turbulent phase is as low as s under the condition of $C_{{n}}^2 = 1 \times {10^{ - 14}}\;{{\rm{m}}^{ - 2/3}}$, $ 5 \times {10^{ - 14}}\;{{\rm{m}}^{ - 2/3}}$, and $1 \times {10^{ - 13}}\;{{\rm{m}}^{ - 2/3}}$. In addition, the turbulence phase extraction capability of CNN can be further enhanced by improving computing power or optimizing model structure. These results indicate that the CNN-based turbulence phase extraction method can effectively extract the turbulence phase, which has important application value in turbulence compensation, atmospheric turbulence characteristics research and image reconstruction.
      Corresponding author: Liu Jun-Min, liujunmin@sztu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61805149, 61575127, 61490713, 61571188), the Natural Science Foundation of Guangdong Province, China (Grant No. 2016A030310065), the Educational Commission of Guangdong Province, China (Grant No. 2016KCXTD006), the Program of Fundamental Research of Shenzhen Science and Technology Planning, China (Grant No. JCYJ20180507182035270), Science and Technology Planning Project of Shenzhen, China (Grant No. ZDSYS201707271014468), and International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, China (Grant No. 2DMOST2018003)
    [1]

    Zheng G, Wang L, Wang J, Zhou M C, Song M M 2018 J. Mod. Opt. 65 1616Google Scholar

    [2]

    Yuan Y S, Liu D, Zhou Z X, Xu H F, Qu J, Cai Y J 2018 Opt. Express 26 21861Google Scholar

    [3]

    Li Y Q, Wang L G, Wu Z S 2018 Optik 158 1349Google Scholar

    [4]

    Wang Y K, Xu H Y, Li D Y, Wang R, Jin C B, Yin X H, Gao S J, Mu Q Q, Xuan L, Cao Z L 2018 Sci. Rep. 8 1124Google Scholar

    [5]

    Gerçekcioğlu H 2019 Opt. Commun. 439 233Google Scholar

    [6]

    Usenko V C, Peuntinger C, Heim B, Günthner K, Derkach I, Elser D, Marquardt C, Filip R, Leuchs G 2018 Opt. Express 26 31106Google Scholar

    [7]

    Hope D A, Jefferies S M, Hart M, Nagy J G 2016 Opt. Express 24 12116Google Scholar

    [8]

    Wen W, Jin Y, Hu M J, Liu X L, Cai Y J, Zou C J, Luo M, Zhou L W, Chu X X 2018 Opt. Commun. 415 48Google Scholar

    [9]

    Ren Y X, Xie G D, Huang H, Ahmed N, Yan Y, Li L, Bao C J, Lavery M P, Tur M, Neifeld M A, Boyd R W, Shapiro J H, Willner A E 2014 Optica 1 376Google Scholar

    [10]

    Yin X L, Chang H, Cui X Z, Ma J X, Wang Y J, Wu G H, Zhang L J, Xin X J 2018 Appl. Opt. 57 7644Google Scholar

    [11]

    Neo R, Goodwin M, Zheng J, Lawrence J, Leon-Saval S, Bland-Hawthorn J, Molina-Terriza G 2016 Opt. Express 24 2919Google Scholar

    [12]

    Gerchberg R W 1972 Optik 35 237

    [13]

    Fu S Y, Zhang S K, Wang T L, Gao C Q 2016 Opt. Lett. 41 3185Google Scholar

    [14]

    Nelson W, Palastro J P, Wu C, Davis C C 2016 Opt. Lett. 41 1301Google Scholar

    [15]

    Hinton G E, Salakhutdinov R R 2006 Science 313 504Google Scholar

    [16]

    Lecun Y, Bengio Y, Hinton G 2015 Nature 521 436Google Scholar

    [17]

    Li J, Zhang M, Wang D S, Wu S J, Zhan Y Y 2018 Opt. Express 26 10494Google Scholar

    [18]

    Roddier N A 1990 Opt. Eng. 29 1174Google Scholar

    [19]

    Mcglamery B L 1967 J. Opt. Soc. Am. 57 293Google Scholar

    [20]

    Zhao S M, Leach J, Gong L Y, Ding J, Zheng B Y 2012 Opt. Express 20 452Google Scholar

    [21]

    Rumerlhar D E 1986 Nature 323 533Google Scholar

    [22]

    Lecun Y, Bottou L, Bengio Y, Haffner P 1998 Proc. IEEE 86 2278Google Scholar

    [23]

    Barakat R, Newsam G 1985 J. Opt. Soc. Am. A 2 2027Google Scholar

    [24]

    Guo Y M, Liu Y, Oerlemans A, Lao S Y, Wu S, Lew M S 2016 Neurocomputing 187 27Google Scholar

    [25]

    Hinton G E, Osindero S, Teh Y 2006 Neural Comput. 18 1527Google Scholar

    [26]

    Qian Y M, Bi M X, Tan T, Yu K 2016 IEEE Trans. Audio Speech Lang. Process. 24 2263Google Scholar

    [27]

    Sheridan P M, Cai F X, Du C, Ma W, Zhang Z Y, Lu W D 2017 Nat. Nanotech. 12 784Google Scholar

  • 图 1  各湍流强度下的随机相位屏 (a), (b) $C_{{n}}^2 \!=\! 1 \!\!\times\!\! {10^{ - 14}}\;{{\rm{m}} ^{{{ - 2} / 3}}}$; (c), (d) $C_{{n}}^2 \!=\! 5 \!\!\times\!\!{10^{ - 14}}\;{{\rm{m}} ^{{{ - 2} / 3}}}$; (e), (f) $C_{\rm{n}}^2 \!=\! 1 \!\!\times\!\! {10^{ - 13}}\;{{\rm{m}} ^{{{ - 2} / 3}}}$

    Figure 1.  Random phase screen at each turbulence intensity: (a), (b) $C_{{n}}^2 = 1 \times {10^{ - 14}}\;{{\rm{m}} ^{{{ - 2} / 3}}}$; (c), (d) $C_{\rm{n}}^2 = 5 \times {10^{ - 14}}\;{{\rm{m}} ^{{{ - 2} / 3}}}$; (e), (f) $C_{\rm{n}}^2 = 1 \times {10^{ - 13}}\;{{\rm{m}} ^{{{ - 2} / 3}}}$.

    图 2  各湍流强度影响下传输光束截面光斑 (a)初始高斯光束; (b), (c) $C_{\rm{n}}^2 = 1 \times {10^{ - 14}}\;{{\rm{m}}^{ - 2/3}}$; (d), (e) $C_{\rm{n}}^2 = 5 \times $ ${10^{ - 14}}\;{{\rm{m}}^{ - 2/3}} $; (f), (g) $C_{\rm{n}}^2 = 1 \times {10^{ - 13}}\;{{\rm{m}}^{ - 2/3}}$

    Figure 2.  The cross-section spot of transmission beam at each turbulence intensity: (a) Initial Gaussian beam; (b), (c) $C_{\rm{n}}^2 = $ $1 \times {10^{ - 14}}\;{{\rm{m}} ^{{{ - 2} / 3}}}$; (d), (e) $C_{\rm{n}}^2 = 5 \times {10^{ - 14}}\;{{\rm{m}} ^{{{ - 2} / 3}}}$; (f), (g) $C_{\rm{n}}^2 = 1 \times {10^{ - 13}}\;{{\rm{m}} ^{{{ - 2} / 3}}}$.

    图 3  提取湍流相位的CNN结构

    Figure 3.  The CNN structure of extracting the turbulent phase.

    图 4  训练过程损失函数曲线

    Figure 4.  The loss function curve of training process.

    图 5  训练过程提取到的湍流相 (a)与(b), (c)与(d), (e)与(f), (g)与(h), (i)与(j)和(k)与(l)的迭代次数分别为1, 100, 500, 4000, 8000, 14000

    Figure 5.  The turbulent phase during the training process: The number of iterations of (a) and (b), (c) and (d), (e) and (f), (g) and (h), (i) and (j), and (k) and (l) is 1, 100, 500, 4000, 8000, 14000.

    图 6  各湍流强度损失函数曲线

    Figure 6.  The loss function curve at each turbulence intensity.

    图 7  不同湍流强度下, 经过CNN提取到的湍流相位 (a), (b), (c)初始高斯光束; (d), (e), (f) 受大气湍流影响的高斯光束; (g), (h), (i)实际的大气湍流相位; (j), (k), (l) CNN输出的预测湍流相位

    Figure 7.  The predicted turbulent phase based on CNN at each turbulence intensity: (a), (b), (c) Initial Gaussian beam; (d), (e), (f) Gaussian beam affected by atmospheric turbulence; (g), (h), (i) the actual turbulence phase; (j), (k), (l) the output phase of CNN.

    图 8  CNN与GS算法提取湍流相位效果对比 (a), (b), (c)受湍流强度为$C_{\rm{n}}^2 = 1 \times {10^{ - 14}}\;{{\rm{m}} ^{{{ - 2} / 3}}}$影响的高斯光束; (d), (e), (f)实际湍流相位; (g), (h), (i)基于CNN模型提取的湍流相位; (j), (k), (l) GS算法提取的湍流相位

    Figure 8.  The comparison of CNN and GS algorithm for extracting turbulence phase: (a), (b), (c) Gaussian beam affected by atmospheric turbulence with $C_{\rm{n}}^2 = 1 \times {10^{ - 14}}\;{{\rm{m}} ^{{{ - 2} / 3}}}$; (d), (e), (f) the actual turbulence phase; (g), (h), (i) the predicted turbulent phase based on CNN; (j), (k), (l) the predicted turbulent phase based on GS algorithm.

    图 9  训练及验证测试结果 (a)训练过程损失函数曲线; (b)训练过程中利用验证集测试得到的预测湍流相位

    Figure 9.  Training and validation set test results: (a) The loss function curve of training process; (b) the predicted turbulence phase obtained by testing the validation set during training.

    表 1  仿真参数

    Table 1.  Parameter of simulation.

    ParameterSimulation Value
    Number of Grid Elements N128
    Grid spacing ${{\varDelta x} / {\rm{cm}}}$About 0.047
    Laser wavelength ${\lambda / {\rm{nm}}}$1550
    Initial ${1 / {\rm{e}}}$ amplitude radius ${{{\omega _0}} / {\rm{cm}}}$2
    Total path length ${L / {\rm{m}}}$20
    Inner scale of Turbulence ${{{l_0}} / {\rm{m}}}$$2 \times {10^{ - 4}}$
    Outer scale of Turbulence ${{{L_0}} / {\rm{m}}}$50
    Number of phase screens n1
    DownLoad: CSV

    表 2  两方法预测时间对比

    Table 2.  The predicted time comparison of two methods.

    Data SetAverage time/s
    GS algorithm (70 iterations)CNN model
    $C_{\rm{n}}^2 = 1 \times {10^{ - 14}}\;{{\rm{m}} ^{{{ - 2} / 3}}}$0.390.0049
    $C_{\rm{n}}^2 = 5 \times {10^{ - 14}}\;{{\rm{m}} ^{{{ - 2} / 3}}}$0.390.0048
    $C_{\rm{n}}^2 = 1 \times {10^{ - 13}}\;{{\rm{m}} ^{{{ - 2} / 3}}}$0.410.0051
    DownLoad: CSV
    Baidu
  • [1]

    Zheng G, Wang L, Wang J, Zhou M C, Song M M 2018 J. Mod. Opt. 65 1616Google Scholar

    [2]

    Yuan Y S, Liu D, Zhou Z X, Xu H F, Qu J, Cai Y J 2018 Opt. Express 26 21861Google Scholar

    [3]

    Li Y Q, Wang L G, Wu Z S 2018 Optik 158 1349Google Scholar

    [4]

    Wang Y K, Xu H Y, Li D Y, Wang R, Jin C B, Yin X H, Gao S J, Mu Q Q, Xuan L, Cao Z L 2018 Sci. Rep. 8 1124Google Scholar

    [5]

    Gerçekcioğlu H 2019 Opt. Commun. 439 233Google Scholar

    [6]

    Usenko V C, Peuntinger C, Heim B, Günthner K, Derkach I, Elser D, Marquardt C, Filip R, Leuchs G 2018 Opt. Express 26 31106Google Scholar

    [7]

    Hope D A, Jefferies S M, Hart M, Nagy J G 2016 Opt. Express 24 12116Google Scholar

    [8]

    Wen W, Jin Y, Hu M J, Liu X L, Cai Y J, Zou C J, Luo M, Zhou L W, Chu X X 2018 Opt. Commun. 415 48Google Scholar

    [9]

    Ren Y X, Xie G D, Huang H, Ahmed N, Yan Y, Li L, Bao C J, Lavery M P, Tur M, Neifeld M A, Boyd R W, Shapiro J H, Willner A E 2014 Optica 1 376Google Scholar

    [10]

    Yin X L, Chang H, Cui X Z, Ma J X, Wang Y J, Wu G H, Zhang L J, Xin X J 2018 Appl. Opt. 57 7644Google Scholar

    [11]

    Neo R, Goodwin M, Zheng J, Lawrence J, Leon-Saval S, Bland-Hawthorn J, Molina-Terriza G 2016 Opt. Express 24 2919Google Scholar

    [12]

    Gerchberg R W 1972 Optik 35 237

    [13]

    Fu S Y, Zhang S K, Wang T L, Gao C Q 2016 Opt. Lett. 41 3185Google Scholar

    [14]

    Nelson W, Palastro J P, Wu C, Davis C C 2016 Opt. Lett. 41 1301Google Scholar

    [15]

    Hinton G E, Salakhutdinov R R 2006 Science 313 504Google Scholar

    [16]

    Lecun Y, Bengio Y, Hinton G 2015 Nature 521 436Google Scholar

    [17]

    Li J, Zhang M, Wang D S, Wu S J, Zhan Y Y 2018 Opt. Express 26 10494Google Scholar

    [18]

    Roddier N A 1990 Opt. Eng. 29 1174Google Scholar

    [19]

    Mcglamery B L 1967 J. Opt. Soc. Am. 57 293Google Scholar

    [20]

    Zhao S M, Leach J, Gong L Y, Ding J, Zheng B Y 2012 Opt. Express 20 452Google Scholar

    [21]

    Rumerlhar D E 1986 Nature 323 533Google Scholar

    [22]

    Lecun Y, Bottou L, Bengio Y, Haffner P 1998 Proc. IEEE 86 2278Google Scholar

    [23]

    Barakat R, Newsam G 1985 J. Opt. Soc. Am. A 2 2027Google Scholar

    [24]

    Guo Y M, Liu Y, Oerlemans A, Lao S Y, Wu S, Lew M S 2016 Neurocomputing 187 27Google Scholar

    [25]

    Hinton G E, Osindero S, Teh Y 2006 Neural Comput. 18 1527Google Scholar

    [26]

    Qian Y M, Bi M X, Tan T, Yu K 2016 IEEE Trans. Audio Speech Lang. Process. 24 2263Google Scholar

    [27]

    Sheridan P M, Cai F X, Du C, Ma W, Zhang Z Y, Lu W D 2017 Nat. Nanotech. 12 784Google Scholar

  • [1] Abdikirim Azizigul, Tao Zhi-Wei, Liu Shi-Wei, Li Yan-Ling, Rao Rui-Zhong, Ren Yi-Chong. Influence of atmospheric turbulence on temporal coherence characteristics of received optical field. Acta Physica Sinica, 2022, 71(23): 234201. doi: 10.7498/aps.71.20221202
    [2] Luo Wen, Chen Tian-Jiang, Zhang Fei-Zhou, Zhou Kai, An Jian-Zhu, Zhang Jian-Zhu. Active illumination uniformity with narrow spectrum laser based on ladderlike phase modulation. Acta Physica Sinica, 2021, 70(15): 154207. doi: 10.7498/aps.70.20210228
    [3] Yan Jie-Lin, Wei Hong-Yan, Cai Dong-Mei, Jia Peng, Qiao Tie-Zhu. Effect of atmospheric turbulence on orbital angular momentum crosstalk of focused vortex beams. Acta Physica Sinica, 2020, 69(14): 144203. doi: 10.7498/aps.69.20200243
    [4] Zhang Dong-Xiao, Chen Zhi-Bin, Xiao Cheng, Qin Meng-Ze, Wu Hao. Generation of turbulence phase screen based on gravitational search algorithm. Acta Physica Sinica, 2019, 68(13): 134205. doi: 10.7498/aps.68.20190081
    [5] Fan Shuang, Zhang Ya-Ping, Wang Fan, Gao Yun-Long, Qian Xiao-Fan, Zhang Yong-An, Xu Wei, Cao Liang-Cai. Gerchberg-Saxton algorithm and angular-spectrum layer-oriented method for true color three-dimensional display. Acta Physica Sinica, 2018, 67(9): 094203. doi: 10.7498/aps.67.20172464
    [6] Zhang Yu-Yan, Zhou Hang, Yan Meisu. Study on the phase-extracting method of self-mixing signal based on empirical mode decomposition. Acta Physica Sinica, 2015, 64(5): 054203. doi: 10.7498/aps.64.054203
    [7] Cai Dong-Mei, Ti Pei-Pei, Jia Peng, Wang Dong, Liu Jian-Xia. Fast simulation of atmospheric turbulence phase screen based on non-uniform sampling. Acta Physica Sinica, 2015, 64(22): 224217. doi: 10.7498/aps.64.224217
    [8] Ke Xi-Zheng, Chen Juan, Yang Yi-Ming. Study on orbital angular momentum of Laguerre-Gaussian beam in a slant-path atmospheric turbulence. Acta Physica Sinica, 2014, 63(15): 150301. doi: 10.7498/aps.63.150301
    [9] Li Xiao-Qing, Wang Tao, Ji Xiao-Ling. Experimental study on propagation properties of spherically aberrated beams through atmospheric turbulence. Acta Physica Sinica, 2014, 63(13): 134209. doi: 10.7498/aps.63.134209
    [10] Cai Dong-Mei, Wang Kun, Jia Peng, Wang Dong, Liu Jian-Xia. Sampling methods of power spectral density method simulating atmospheric turbulence phase screen. Acta Physica Sinica, 2014, 63(10): 104217. doi: 10.7498/aps.63.104217
    [11] Li Cheng-Qiang, Zhang He-Yong, Wang Ting-Feng, Liu Li-Sheng, Guo Jin. Investigation on coherence characteristics of Gauss-Schell model beam propagating in atmospheric turbulence. Acta Physica Sinica, 2013, 62(22): 224203. doi: 10.7498/aps.62.224203
    [12] Li Xiao-Qing, Ji Xiao-Ling, Zhu Jian-Hua. Higher-order intensity moments of optical beams in atmospheric turbulence. Acta Physica Sinica, 2013, 62(4): 044217. doi: 10.7498/aps.62.044217
    [13] Liu Yang-Yang, Zhang Wen-Xi. Simulation for Space target interference imaging system distorted by atmospheric turbulence. Acta Physica Sinica, 2012, 61(12): 124201. doi: 10.7498/aps.61.124201
    [14] Li Jin-Hong, Lü Bai-Da. Comparative study of partially coherent vortex beam propagations through atmospheric turbulence along a uplink path and a downlink path. Acta Physica Sinica, 2011, 60(7): 074205. doi: 10.7498/aps.60.074205
    [15] Liu Fei, Ji Xiao-Ling. Beam propagation factor of cosh-Gaussian array beams propagating through atmospheric turbulence. Acta Physica Sinica, 2011, 60(1): 014216. doi: 10.7498/aps.60.014216
    [16] Li Fang, Tang Hua, Jiang Yue-Song, Ou Jun. Spiral spectrum of Laguerre-Gaussian beams propagating in turbulent atmosphere. Acta Physica Sinica, 2011, 60(1): 014204. doi: 10.7498/aps.60.014204
    [17] MaYan-Xing, Wang Xiao-Lin, Zhou Pu, Ma Hao-Tong, Zhao Hai-Chuan, Xu Xiao-Jun, Si Lei, Liu Ze-Jin, Zhao Yi-Jun. Effect of atmosphere turbulence on phase modulation signals in coherent beam combination with multi-dithering technique. Acta Physica Sinica, 2011, 60(9): 094211. doi: 10.7498/aps.60.094211
    [18] Ji Xiao-Ling. Influence of atmospheric turbulence on the spreading and directionality of radial Gaussian array beams. Acta Physica Sinica, 2010, 59(1): 692-698. doi: 10.7498/aps.59.692
    [19] Zheng Wei-Wei, Wang Li-Qin, Xu Jing-Ping, Wang Li-Gang. Studies on propagation of laser beam array with initial phase distributions in a turbulent atmosphere. Acta Physica Sinica, 2009, 58(7): 5098-5103. doi: 10.7498/aps.58.5098
    [20] Chen Xiao-Wen, Tang Ming-Yue, Ji Xiao-Ling. The influence of atmospheric turbulence on the spatial correlation property of partially coherent Hermite-Gaussian beams. Acta Physica Sinica, 2008, 57(4): 2607-2613. doi: 10.7498/aps.57.2607
Metrics
  • Abstract views:  14386
  • PDF Downloads:  374
  • Cited By: 0
Publishing process
  • Received Date:  28 June 2019
  • Accepted Date:  15 October 2019
  • Published Online:  05 January 2020

/

返回文章
返回
Baidu
map