Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Growth and characterization of Ti:MgAl2O4 laser crystal by Czochralski method

Sun Gui-Hua Zhang Qing-Li Luo Jian-Qiao Sun Dun-Lu Gu Chang-Jiang Zheng Li-Li Han Song Li Wei-Min

Citation:

Growth and characterization of Ti:MgAl2O4 laser crystal by Czochralski method

Sun Gui-Hua, Zhang Qing-Li, Luo Jian-Qiao, Sun Dun-Lu, Gu Chang-Jiang, Zheng Li-Li, Han Song, Li Wei-Min
科大讯飞翻译 (iFLYTEK Translation)
PDF
HTML
Get Citation
  • The melting point of Ti:MgAl2O4 crystal is as high as 2130 °C, it is a challenge to obtain a large-sized and high-quality laser crystal. By optimizing the crystal growth process, Ti:MgAl2O4 crystal with a size of 30 mm× 70 mm is successfully grown by the Czochralski method under the condition of weak reducing atmosphere. The X-ray diffraction pattern is studied, and the x-ray rocking curve indicates that the grown crystal has a high crystalline quality in terms of the lower full width at half maximum(FWHM) intensity, which provides a material basis for the next laser output experiment. In a range of 100–1000 cm–1, there are four Raman vibration peaks located at 312, 410, 675 cm–1 and 771 cm–1 respectively. The grown crystal has an absorption cutoff range of 250–318 nm and two wide absorption bands of 395–495 nm and 550–1100 nm. Excited by 271 nm, the grown crystal shows a strong broadband emission ina range of 340–650 nm with a peak centered at 480 nm. After annealing in hydrogen atmosphere, shape of the transmittance spectrum and emission spectrum are both unchanged, but the fluorescent emission intensity is significantly reduced. After annealing in air atmosphere, the original two absorption bands disappear while none of the characteristics of fluorescence emission in a 340–650 nm range changes significantly. In addition, a new fluorescence emission peak near 725 nm is observed. Combining with the ESR spectrum, what we canconfirm is that the Ti:MgAl2O4 as-grown crystal contains Ti3+ and Ti4+ ions, and no ESR signal of Ti3+ is observed after annealing in air atmosphere. Moreover, excitationspectrum is also recorded. The fluorescence lifetime is 14 μs at room temperature, which is 4–5 times that of Ti:Al2O3 crystal and Ti:BeAl2O4 crystal. Furthermore, the emission cross section of the grown Ti:MgAl2O4 crystal is calculated from the Füchtbauer-Ladenburg (F-L) formula and its value is 2 × 10–20 cm2, large emission cross section which is beneficial for realizing laser oscillation. All the above results show that the Ti:MgAl2O4 crystal is a potential crystal material for realizing broadband tunable blue laser output.
      Corresponding author: Sun Gui-Hua, ghsun2011@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51502292)
    [1]

    章佶, 孙真荣, 王祖赓, 司继良, 王静雅, 杭寅, 徐军 2005 人工晶体学报 34 657Google Scholar

    Zhang J, Sun Z R, Wang Z G, Si J L, Wang J Y, Hang Y, Xu J 2005 J. Synth. Cryst. 34 657Google Scholar

    [2]

    Gourier D, Colle L, Lejus A M, Vivein D, Moncorge R 1988 J. Appl. Phys. 63 1144Google Scholar

    [3]

    夏海平, 徐铁峰, 张新民, 王金浩, 章践立 2009 光学技术 35 307Google Scholar

    Xia H P, Xu T F, Zhang X M, Wang J H, Zhang J L 2009 Opt. Tech. 35 307Google Scholar

    [4]

    Basun S A, Danger T, Kaplyanskii A A, McClure D S, Petermann K, Wong W C 1996 Phys. Rev. B 54 6141Google Scholar

    [5]

    Bausa l E, Vergara I, Garcia-Sole J, Strek W, Deren P J 1990 J. Appl. Phys. 68 736Google Scholar

    [6]

    Sato T, Shirai M, Tanaka K, Kawabe Y, Hanamura E 2005 J. Lumin. 114 155Google Scholar

    [7]

    Jouini A, Sato H, Yoshikawa A, Fukuda T 2006 J. Mater. Res. 21 2337Google Scholar

    [8]

    Kuleshov N V, Shcherbitsky V G, Mikhailov V P, Kiick S, Koetke J, Petermann K, Huber G 1997 J. Lumin. 71 265Google Scholar

    [9]

    Tomita A, Sato T, Tanaka K, Kawabe Y, Shirai M, Tanaka K, Hanamura E 2004 J. Lumin. 109 19Google Scholar

    [10]

    Jouini A, Yoshikawa A, Fukuda T, Boulon G 2006 J. Cryst. Growth 293 517Google Scholar

    [11]

    Lombard P, Boizot B, Ollier N, Jouini A, Yoshikawa A 2009 J. Cryst. Growth 311 899Google Scholar

    [12]

    Wood D L, Imbusch G F, Macfarlane R M, Kisliuk P, Larkin D M 1968 J. Chem. Phys. 48 5255Google Scholar

    [13]

    王成思, 沈锡田, 刘云贵, 张倩 2019 光谱学与光谱分析 39 109

    Wang C S, Shen X T, Liu Y G, Zhang Q 2019 Spectrosc. Spect. Anal. 39 109

    [14]

    O'Horo M P, Frisillo A L, White W B 1973 J. Phys. Chem. Solids 34 23Google Scholar

    [15]

    Takahashi S, Kan A, Ogawa H 2017 J. Eur. Ceram. Soc. 37 1001Google Scholar

    [16]

    Frass L W, Moore J E, Salzberg J B 1973 J. Chem. Phys. 58 3585Google Scholar

    [17]

    Simeone D, Dodane-Thiriet C, Gosset D, Daniel P, Beauvy M 2002 J. Nucl. Mater. 300 151Google Scholar

    [18]

    Dash S, Sahoo R K, Das A, Bajpai S, Debasish D, Singh S K 2017 J. Alloy. Compd. 726 1186Google Scholar

    [19]

    Watterich A, Hofstaetter A, Wuerz’ R and Scharmann A 1996 Solid State Commun. 100 513Google Scholar

    [20]

    Jiang Y Q, Halliburton L E, Roth M, Tseitlin M, Angert N, 2007 Physica B 400 190Google Scholar

    [21]

    Dong S Y, Wang X Y, Shen L F, Li H S, Wang J, Nie P, Wang J J, Zhang X G 2015 J. Electroanal. Chem. 757 1Google Scholar

  • 图 1  尺寸为Ø30 mm × 70 mm的Ti:MgAl2O4晶体

    Figure 1.  As-grown Ti:MgAl2O4 crystal with the size of Ø30 mm × 70 mm.

    图 2  Ti:MgAl2O4晶体的粉末衍射图和MgAl2O4晶体的标准谱图(JCPDS, no. 77-0435)

    Figure 2.  X-ray diffraction patterns of the as-grown Ti:MgAl2O4 crystal and MgAl2O4 standard patterns (JCPDS, no. 77-0435).

    图 3  Ti:MgAl2O4晶体(100)面的摇摆曲线

    Figure 3.  X-ray rocking curve of (100) plane of the as-grown Ti:MgAl2O4 crystal.

    图 4  Ti:MgAl2O4晶体的拉曼谱图

    Figure 4.  Raman spectra of the as-grown Ti:MgAl2O4 crystal.

    图 5  退火前后Ti:MgAl2O4晶体在250−1200 nm范围内的透过光谱

    Figure 5.  Transmittance spectra of the as-grown Ti:MgAl2O4 crystal before and after annealing in the range of 250−1200 nm.

    图 6  退火前后Ti:MgAl2O4晶体在271 nm波长激发下的室温荧光发射光谱

    Figure 6.  Emission spectra of the as-grown Ti:MgAl2O4 crystal before and after annealing excited by 271 nm at room temperature.

    图 7  Ti:MgAl2O4晶体在130 K时的ESR谱

    Figure 7.  ESR spectrum of the as-grown Ti:MgAl2O4 crystal before and after annealing at 130 K.

    图 8  退火前后Ti:MgAl2O4晶体480 nm发射的激发光谱

    Figure 8.  Excitation spectra of the as-grown Ti:MgAl2O4 crystal before and after annealing with 480 nm as monitoring.

    图 9  室温下Ti:MgAl2O4晶体的荧光衰减曲线

    Figure 9.  Emission decay curve of the as-grown Ti:MgAl2O4 crystal at room temperature.

    表 1  几种不同的MgAl2O4的拉曼振动峰

    Table 1.  Raman vibration peaks of several different MgAl2O4.

    不同的MgAl2O4振动模式/cm–1
    F2g(1)EgF2g(2)A1g
    Natural Cr:MgAl2O4 crystal[13]312407667769
    MgAl2O4 crystal[14]311410671772
    MgAl2O4 ceramic[15]312407666767
    Natural Cr, V:MgAl2O4 crystal[16]305405663770
    Non-stoichiometric MgAl2O4 powder[17]306406670766
    MgAl2O4 polycrystalline [18]311407667767
    DownLoad: CSV
    Baidu
  • [1]

    章佶, 孙真荣, 王祖赓, 司继良, 王静雅, 杭寅, 徐军 2005 人工晶体学报 34 657Google Scholar

    Zhang J, Sun Z R, Wang Z G, Si J L, Wang J Y, Hang Y, Xu J 2005 J. Synth. Cryst. 34 657Google Scholar

    [2]

    Gourier D, Colle L, Lejus A M, Vivein D, Moncorge R 1988 J. Appl. Phys. 63 1144Google Scholar

    [3]

    夏海平, 徐铁峰, 张新民, 王金浩, 章践立 2009 光学技术 35 307Google Scholar

    Xia H P, Xu T F, Zhang X M, Wang J H, Zhang J L 2009 Opt. Tech. 35 307Google Scholar

    [4]

    Basun S A, Danger T, Kaplyanskii A A, McClure D S, Petermann K, Wong W C 1996 Phys. Rev. B 54 6141Google Scholar

    [5]

    Bausa l E, Vergara I, Garcia-Sole J, Strek W, Deren P J 1990 J. Appl. Phys. 68 736Google Scholar

    [6]

    Sato T, Shirai M, Tanaka K, Kawabe Y, Hanamura E 2005 J. Lumin. 114 155Google Scholar

    [7]

    Jouini A, Sato H, Yoshikawa A, Fukuda T 2006 J. Mater. Res. 21 2337Google Scholar

    [8]

    Kuleshov N V, Shcherbitsky V G, Mikhailov V P, Kiick S, Koetke J, Petermann K, Huber G 1997 J. Lumin. 71 265Google Scholar

    [9]

    Tomita A, Sato T, Tanaka K, Kawabe Y, Shirai M, Tanaka K, Hanamura E 2004 J. Lumin. 109 19Google Scholar

    [10]

    Jouini A, Yoshikawa A, Fukuda T, Boulon G 2006 J. Cryst. Growth 293 517Google Scholar

    [11]

    Lombard P, Boizot B, Ollier N, Jouini A, Yoshikawa A 2009 J. Cryst. Growth 311 899Google Scholar

    [12]

    Wood D L, Imbusch G F, Macfarlane R M, Kisliuk P, Larkin D M 1968 J. Chem. Phys. 48 5255Google Scholar

    [13]

    王成思, 沈锡田, 刘云贵, 张倩 2019 光谱学与光谱分析 39 109

    Wang C S, Shen X T, Liu Y G, Zhang Q 2019 Spectrosc. Spect. Anal. 39 109

    [14]

    O'Horo M P, Frisillo A L, White W B 1973 J. Phys. Chem. Solids 34 23Google Scholar

    [15]

    Takahashi S, Kan A, Ogawa H 2017 J. Eur. Ceram. Soc. 37 1001Google Scholar

    [16]

    Frass L W, Moore J E, Salzberg J B 1973 J. Chem. Phys. 58 3585Google Scholar

    [17]

    Simeone D, Dodane-Thiriet C, Gosset D, Daniel P, Beauvy M 2002 J. Nucl. Mater. 300 151Google Scholar

    [18]

    Dash S, Sahoo R K, Das A, Bajpai S, Debasish D, Singh S K 2017 J. Alloy. Compd. 726 1186Google Scholar

    [19]

    Watterich A, Hofstaetter A, Wuerz’ R and Scharmann A 1996 Solid State Commun. 100 513Google Scholar

    [20]

    Jiang Y Q, Halliburton L E, Roth M, Tseitlin M, Angert N, 2007 Physica B 400 190Google Scholar

    [21]

    Dong S Y, Wang X Y, Shen L F, Li H S, Wang J, Nie P, Wang J J, Zhang X G 2015 J. Electroanal. Chem. 757 1Google Scholar

Metrics
  • Abstract views:  9429
  • PDF Downloads:  90
  • Cited By: 0
Publishing process
  • Received Date:  28 July 2019
  • Accepted Date:  27 September 2019
  • Available Online:  17 December 2019
  • Published Online:  05 January 2020

/

返回文章
返回
Baidu
map