Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Gerchberg-Saxton algorithm and angular-spectrum layer-oriented method for true color three-dimensional display

Fan Shuang Zhang Ya-Ping Wang Fan Gao Yun-Long Qian Xiao-Fan Zhang Yong-An Xu Wei Cao Liang-Cai

Citation:

Gerchberg-Saxton algorithm and angular-spectrum layer-oriented method for true color three-dimensional display

Fan Shuang, Zhang Ya-Ping, Wang Fan, Gao Yun-Long, Qian Xiao-Fan, Zhang Yong-An, Xu Wei, Cao Liang-Cai
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Computer-generated hologram (CGH) makes possible the three-dimensional (3D) display of true stereo. It has characteristics of strong flexibility, small noise, easy replication, and computable virtual object. However, there are still some difficulties with the CGH 3D display presently, such as slow computation speed of complex object hologram, small size and small field angle of 3D scene, much noise of reconstruction image, and true color display. In this paper, the problem of reconstruction image noise and true color display of the CGH are studied, and the hologram of true color 3D object with complex morphologies is calculated. First of all, the angular-spectrum layer-oriented method can avoid error caused by the paraxial approximation and be used to accurately generate and calculate 3D object hologram. And it also has advantages of efficient computation, reduced complexity, and less storage memory. We achieve the true color display of a 3D object by using the angular-spectrum method based on intensity and depth maps. We also analyze the problem of multi-wavelength sampling, and mitigate the phenomenon of frequency mixing effectively. Then, we propose to use the Gerchberg-Saxton (GS) algorithm along with the angular-spectrum layer oriented method to reduce the speckle noise in the reconstruction image. The root mean-square error (RMSE) and peak signal-to-noise ratio (PSNR) of the reconstruction image by angular-spectrum layer-oriented method with the GS algorithm are compared with those obtained in the case without using the GS algorithm. The RMSE and PSNR are the main methods of evaluating the image quality. Smaller RMSE and bigger PSNR correspond to higher quality of the image. The hologram and reconstruction image of the true color locomotive with complex morphologies are calculated using the method proposed in this paper and the locomotive is divided into three parts:head, middle and tail. The RMSE and the PSNR of reconstruction image of the head are approximately 0.77 and 65.7, respectively. The RMSE and the PSNR of reconstruction image of the middle are approximately 0.68 and 70.0, respectively, and so are those of the tail. Comparing with the traditional angular-spectrum layer-oriented method, the RMSE of the reconstruction images of the head, middle and tail are reduced approximately by 0.11, 0.40, 0.41, and the PSNR are increased approximately by 1.15, 5.70, 4.13, respectively. The simulation results show that the speckle noise is suppressed effectively and the quality of the reconstruction image is improved when the GS algorithm along with the angular-spectrum layer oriented method is used. The proposed method is more suitable for the calculation of complex 3D objects with true color.
      Corresponding author: Zhang Ya-Ping, yapingzhang11@qq.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61007061, 61565010, 11762009).
    [1]

    Goodman J W, Lwrence R W 1967 Appl. Phys. Lett. 11 77

    [2]

    Adam K, David L K 1965 Appl. Opt. 4 387

    [3]

    Qian X F 2015 Information Optical Digital Laboratory (Beijing: Science Press) p200 (in Chinese) [钱晓凡 2015 信息光学数字实验室 (北京: 科学出版社) 第200页]

    [4]

    Gabor D 1948 Nature 161 777

    [5]

    Leith E N, Upatnieks J 1963 J. Opt. Soc. Am. 53 1377

    [6]

    Tan F 2012 Opt. Instrum. 34 16 (in Chinese) [覃芳 2012 光学仪器34 16]

    [7]

    Waters J P 1966 Appl. Phys. Lett. 9 405

    [8]

    Matsushima K, Nakahara S 2009 Appl. Opt. 48 H54

    [9]

    Pan Y J, Wang Y T, Liu J, Li X, Jia J 2014 Appl. Opt. 53 1354

    [10]

    Sun P, Xie J H, Zhou Y L 2004 Acta Opt. Sin. 24 110 (in Chinese) [孙萍, 谢敬辉, 周元林 2004 光学学报 24 110]

    [11]

    Li J C 2014 Diffraction Calculations and Digital Holography (Vol. 1) (Beijing: Science Press) p261 (in Chinese) [李俊昌 2014 衍射计算及数字全息(上册) (北京: 科学出版社)第261页]

    [12]

    Poon T C, Liu J P 2014 Introduction to Modern Digital Holography with MATLAB (London: Cambridge University Press) p5

    [13]

    Michal M, Maciei S, Andrzei K, Grzegorz M 2005 Opt. Eng. 44 125805

    [14]

    Cao X M, Sang X Z, Chen Z D, Leng J M, Zhang M, Guo N, Yu C X, Xu D X 2014 Chin. J. Lasers 41 0609002 (in Chinese) [曹雪梅, 桑新柱, 陈志东, 冷俊敏, 张明, 郭南, 余重秀, 徐大雄 2014中国激光41 0609002]

    [15]

    Chang C L, Xia J, Yang L, Lei W, Yang Z M, Chen J H 2015 Appl. Opt. 54 6994

    [16]

    Pang H, Wang J Z, Cao A X, Zhang M, Shi L F, Deng Q L 2017 IEEE Photon. J. 9 1

    [17]

    Zhao Y, Cao L C, Zhang H, Kong D Z, Jin G F 2015 Opt. Express 23 25440

    [18]

    Gerchberg R W, Saxton W O 1972 Optik 35 237

    [19]

    Xie J H, Liao N F, Cao L C 2007 Fundamentals of Fourier Optics and Contemporary Optics (Beijing: Beijing Polytechnic University Press) p79 (in Chinese) [谢景辉, 廖宁放, 曹良才 2007 傅里叶光学与现代光学基础(北京:北京理工大学出版社)第79页]

    [20]

    Shen C, Wei S, Liu K F, Zhang F, Li H, Wang Y 2014 Laser Optoelectr. Prog. 51 030005} (in Chinese) [沈川, 韦穗, 刘凯峰, 张芬, 李浩, 王岳 2014 激光与光电子学进展 51 030005]

    [21]

    Piao Y L, Kwon K C, Jeong J S, Kim N 2016 3D Image Acquisition and Display: Technology, Perception and Applications Heidelberg, Germany, July 25-28, 2016 JW4A. 29

    [22]

    Peng J M, Du S J, Jiang P Z 2013 High Power Laser and Particle Beams 25 315 (in Chinese) [彭金锰, 杜少军, 蒋鹏志 2013 强激光与粒子束 25 315]

    [23]

    Gu X, Xu K S 2000 J. Fudan Univ. (Natural Science) 39 205 (in Chinese) [顾翔, 徐克璹 2000 复旦学报(自然科学版) 39 205]

    [24]

    Wang J Y, Cao J H 2015 J. Tianjin Univ. Technol. Education 25 36 (in Chinese) [王金洋, 曹继华2015天津职业技术师范大学学报 25 36]

    [25]

    Li F, Bi Y, Wang H, Sun M Y, Kong X X 2012 Chin. J. Lasers 39 1009001

    [26]

    Zhou P H, Bi Y, Sun M Y, Wang H, Li F, Qi Y 2014 Appl. Opt. 53 G209

    [27]

    Pan Y C, Xu X W, Liang X N 2013 Appl. Opt. 52 6562

    [28]

    Liu J, Ma X, Wang Y T, Jia J, Zhang Y X 2015 CN104281490A (in Chinese) [刘娟, 马晓, 王涌天, 贾甲, 张迎曦 2015 CN104281490A]

    [29]

    Kwon M W, Kim S C, Yoon S E, Kim E S 2015 Opt. Express 23 2101

    [30]

    Chen H R, Fu S H, Wang Y Q 2014 Opto-Electron. Eng. 41 48 (in Chinese) [陈慧荣, 付胜豪, 王元庆2014光电工程41 48]

    [31]

    Fu S H, Wang Y Q, Bao X L, Fan K F 2013 Electron. Opt. Control 20 61 (in Chinese) [付胜豪, 王元庆, 鲍绪良, 范科峰 2013 电光与控制 20 61]

  • [1]

    Goodman J W, Lwrence R W 1967 Appl. Phys. Lett. 11 77

    [2]

    Adam K, David L K 1965 Appl. Opt. 4 387

    [3]

    Qian X F 2015 Information Optical Digital Laboratory (Beijing: Science Press) p200 (in Chinese) [钱晓凡 2015 信息光学数字实验室 (北京: 科学出版社) 第200页]

    [4]

    Gabor D 1948 Nature 161 777

    [5]

    Leith E N, Upatnieks J 1963 J. Opt. Soc. Am. 53 1377

    [6]

    Tan F 2012 Opt. Instrum. 34 16 (in Chinese) [覃芳 2012 光学仪器34 16]

    [7]

    Waters J P 1966 Appl. Phys. Lett. 9 405

    [8]

    Matsushima K, Nakahara S 2009 Appl. Opt. 48 H54

    [9]

    Pan Y J, Wang Y T, Liu J, Li X, Jia J 2014 Appl. Opt. 53 1354

    [10]

    Sun P, Xie J H, Zhou Y L 2004 Acta Opt. Sin. 24 110 (in Chinese) [孙萍, 谢敬辉, 周元林 2004 光学学报 24 110]

    [11]

    Li J C 2014 Diffraction Calculations and Digital Holography (Vol. 1) (Beijing: Science Press) p261 (in Chinese) [李俊昌 2014 衍射计算及数字全息(上册) (北京: 科学出版社)第261页]

    [12]

    Poon T C, Liu J P 2014 Introduction to Modern Digital Holography with MATLAB (London: Cambridge University Press) p5

    [13]

    Michal M, Maciei S, Andrzei K, Grzegorz M 2005 Opt. Eng. 44 125805

    [14]

    Cao X M, Sang X Z, Chen Z D, Leng J M, Zhang M, Guo N, Yu C X, Xu D X 2014 Chin. J. Lasers 41 0609002 (in Chinese) [曹雪梅, 桑新柱, 陈志东, 冷俊敏, 张明, 郭南, 余重秀, 徐大雄 2014中国激光41 0609002]

    [15]

    Chang C L, Xia J, Yang L, Lei W, Yang Z M, Chen J H 2015 Appl. Opt. 54 6994

    [16]

    Pang H, Wang J Z, Cao A X, Zhang M, Shi L F, Deng Q L 2017 IEEE Photon. J. 9 1

    [17]

    Zhao Y, Cao L C, Zhang H, Kong D Z, Jin G F 2015 Opt. Express 23 25440

    [18]

    Gerchberg R W, Saxton W O 1972 Optik 35 237

    [19]

    Xie J H, Liao N F, Cao L C 2007 Fundamentals of Fourier Optics and Contemporary Optics (Beijing: Beijing Polytechnic University Press) p79 (in Chinese) [谢景辉, 廖宁放, 曹良才 2007 傅里叶光学与现代光学基础(北京:北京理工大学出版社)第79页]

    [20]

    Shen C, Wei S, Liu K F, Zhang F, Li H, Wang Y 2014 Laser Optoelectr. Prog. 51 030005} (in Chinese) [沈川, 韦穗, 刘凯峰, 张芬, 李浩, 王岳 2014 激光与光电子学进展 51 030005]

    [21]

    Piao Y L, Kwon K C, Jeong J S, Kim N 2016 3D Image Acquisition and Display: Technology, Perception and Applications Heidelberg, Germany, July 25-28, 2016 JW4A. 29

    [22]

    Peng J M, Du S J, Jiang P Z 2013 High Power Laser and Particle Beams 25 315 (in Chinese) [彭金锰, 杜少军, 蒋鹏志 2013 强激光与粒子束 25 315]

    [23]

    Gu X, Xu K S 2000 J. Fudan Univ. (Natural Science) 39 205 (in Chinese) [顾翔, 徐克璹 2000 复旦学报(自然科学版) 39 205]

    [24]

    Wang J Y, Cao J H 2015 J. Tianjin Univ. Technol. Education 25 36 (in Chinese) [王金洋, 曹继华2015天津职业技术师范大学学报 25 36]

    [25]

    Li F, Bi Y, Wang H, Sun M Y, Kong X X 2012 Chin. J. Lasers 39 1009001

    [26]

    Zhou P H, Bi Y, Sun M Y, Wang H, Li F, Qi Y 2014 Appl. Opt. 53 G209

    [27]

    Pan Y C, Xu X W, Liang X N 2013 Appl. Opt. 52 6562

    [28]

    Liu J, Ma X, Wang Y T, Jia J, Zhang Y X 2015 CN104281490A (in Chinese) [刘娟, 马晓, 王涌天, 贾甲, 张迎曦 2015 CN104281490A]

    [29]

    Kwon M W, Kim S C, Yoon S E, Kim E S 2015 Opt. Express 23 2101

    [30]

    Chen H R, Fu S H, Wang Y Q 2014 Opto-Electron. Eng. 41 48 (in Chinese) [陈慧荣, 付胜豪, 王元庆2014光电工程41 48]

    [31]

    Fu S H, Wang Y Q, Bao X L, Fan K F 2013 Electron. Opt. Control 20 61 (in Chinese) [付胜豪, 王元庆, 鲍绪良, 范科峰 2013 电光与控制 20 61]

  • [1] Zhang Xu, Ding Jin-Min, Hou Chen-Yang, Zhao Yi-Ming, Liu Hong-Wei, Liang Sheng. Machine learning based laser homogenization method. Acta Physica Sinica, 2024, 73(16): 164205. doi: 10.7498/aps.73.20240747
    [2] Liu Han-Yang, Hua Nan, Wang Yi-Nuo, Liang Jun-Qing, Ma Hong-Yang. Three dimensional image encryption algorithm based on quantum random walk and multidimensional chaos. Acta Physica Sinica, 2022, 71(17): 170303. doi: 10.7498/aps.71.20220466
    [3] Wang Chuang-Ye, Ning Ti-Gang, Li Jing, Pei Li, Zheng Jing-Jing, Li Yu-Jian, Ai Bo. Triangular-shaped waveform generation with variable symmetry based on dual-polarization modulation. Acta Physica Sinica, 2021, 70(22): 224211. doi: 10.7498/aps.70.20210751
    [4] Xu Qi-Wei, Wang Pei-Pei, Zeng Zhen-Jia, Huang Ze-Bin, Zhou Xin-Xing, Liu Jun-Min, Li Ying, Chen Shu-Qing, Fan Dian-Yuan. Extracting atmospheric turbulence phase using deep convolutional neural network. Acta Physica Sinica, 2020, 69(1): 014209. doi: 10.7498/aps.69.20190982
    [5] Liu Chang, Liu Xiang-Rui. Angle resolved photoemission spectroscopy studies on three dimensional strong topological insulators and magnetic topological insulators. Acta Physica Sinica, 2019, 68(22): 227901. doi: 10.7498/aps.68.20191450
    [6] Wang Yue, Liang Yan-Sheng, Yan Shao-Hui, Cao Zhi-Liang, Cai Ya-Nan, Zhang Yan, Yao Bao-Li, Lei Ming. Axial multi-particle trapping and real-time direct observation. Acta Physica Sinica, 2018, 67(13): 138701. doi: 10.7498/aps.67.20180460
    [7] Wang Hao-Sen, Yang Shou-Wen, Bai Yan, Chen Tao, Wang Hong-Nian. Three-dimensional finite volume simulation of the response of azimuth electromagnetic wave resistivity while drilling in inhomogeneous anisotropic formation. Acta Physica Sinica, 2016, 65(7): 079101. doi: 10.7498/aps.65.079101
    [8] Chen Gui-Bo, Bi Juan, Zhang Ye, Li Zong-Wen. High-order generalized extended Born approximation algorithm for 3D electromagnetic responses modeling in anisotropic medium. Acta Physica Sinica, 2013, 62(9): 094101. doi: 10.7498/aps.62.094101
    [9] Li Qing-Du, Tang Song. Algorithm for finding horseshoes in three-dimensional hyperchaotic maps and its application. Acta Physica Sinica, 2013, 62(2): 020510. doi: 10.7498/aps.62.020510
    [10] Zhang Zhong-Yu, Yao Xiong-Liang, Zhang A-Man. Cavitation shape of the three-dimensional slender at a small attack angle in a steady flow. Acta Physica Sinica, 2013, 62(20): 204701. doi: 10.7498/aps.62.204701
    [11] Yang Chao, Liu Da-Gang, Wang Xiao-Ming, Liu La-Qun, Wang Xue-Qiong, Liu Sheng-Gang. A three-dimensional particle-in-cell/Monte Carlo computer simulation based on negative hydrogen ion source. Acta Physica Sinica, 2012, 61(4): 045204. doi: 10.7498/aps.61.045204
    [12] Zhang Bao-Long, Li Dan, Dai Feng-Zhi, Yang Shi-Feng, Hoising Kwok. Three-dimensional optical modeling of color filter liquid-crystal-on-silicon microdisplays. Acta Physica Sinica, 2012, 61(4): 040701. doi: 10.7498/aps.61.040701
    [13] Shi Yi-Shi, Wang Ya-Li, Yang Yu-Hua, Xiao Jun. Research on the algorithm of three-dimensional information encryption based on the phase extraction. Acta Physica Sinica, 2011, 60(3): 034202. doi: 10.7498/aps.60.034202
    [14] Feng You-Jun, Lin Zhong-Xiao, Zhang Rong-Zhu. The influence of root mean square phase gradient of continuous phase plate on smoothing focal spot. Acta Physica Sinica, 2011, 60(10): 104202. doi: 10.7498/aps.60.104202
    [15] Zhao La-La, Liu Chu-Sheng, Yan Jun-Xia, Xu Zhi-Peng. Numerical simulation on segregation process of particles using 3D discrete element method. Acta Physica Sinica, 2010, 59(3): 1870-1876. doi: 10.7498/aps.59.1870
    [16] Ye Hong-Xia, Jin Ya-Qiu. A hybrid analytical-numerical algorithm for scattering from a 3-D target above a randomly rough surface. Acta Physica Sinica, 2008, 57(2): 839-846. doi: 10.7498/aps.57.839
    [17] Wang Min, Hu Xiao-Fang, Wu Xiao-Ping. Digital image correlation method for the analysis of 3-D internal displacement field in object. Acta Physica Sinica, 2006, 55(10): 5135-5139. doi: 10.7498/aps.55.5135
    [18] Yu Si-Min. Circuit implementation for generating three-dimensional multi-scroll chaotic att ractors via triangular wave series. Acta Physica Sinica, 2005, 54(4): 1500-1509. doi: 10.7498/aps.54.1500
    [19] Shen Jin-Yuan, Li Xian-Guo, Chang Sheng-Jiang, Zhang Yan-Xin. Application of phase features in recognizing 3-D objects. Acta Physica Sinica, 2005, 54(11): 5157-5163. doi: 10.7498/aps.54.5157
    [20] CHANG MING, XU SHOU-LIAN. ERROR ANALYSIS FOR VOIGT FUNCTION METHOD. Acta Physica Sinica, 1993, 42(3): 446-452. doi: 10.7498/aps.42.446
Metrics
  • Abstract views:  8034
  • PDF Downloads:  306
  • Cited By: 0
Publishing process
  • Received Date:  16 November 2017
  • Accepted Date:  15 January 2018
  • Published Online:  05 May 2018

/

返回文章
返回
Baidu
map