-
A novel approach to using tunable diode laser absorption spectrum (TDLAS) is developed for nonuniform velocity distribution measurement by Doppler effect. An analysis of the energy in direct absorption spectrum at low frequencies is made by Fourier transform, because the TDLAS method offers the advantages in using Beer law to deal with coupling relations between velocity distribution and corresponding length of velocity region. By comparing with traditional TDLAS-Doppler velocity measurement, advantages of this approach to the more exact solution of core flow velocity by signal process without using extra lasers and detectors are explored. Following the published theory, between velocity regions at multiple projections the absorbance about average in frequency offsets and the absorbance about difference in frequency offsets are incorporated into an improved fitting model. A solution to obtaining changes of absorbance energy at low frequencies by Fourier transform is used to demonstrate the ability to recover minor change in absorbance under different conditions, inferring a better method to realize the simultaneous measurement of velocity distribution. The influences of these parameters, such as projection angles and noise during absorption, are investigated by the multiple projection simulations at rovibrational transitions of H2O near 7185.6 cm–1 from three projections. This approach is validated in a two-stage velocity distribution model, demonstrating the ability to exactly measure core flow, with a precision of 0.9% RMS (root mean square). The high velocity in the core flow is less influenced by the random noise in absorption due to nearly linear relationship between the difference in frequency offsets and the ratio of length of velocity region. Some satisfied results can be obtained when larger angles of projection are arranged. The combination of 0°, 30°, and 60° will be a reasonable optic design considering the limitation of spatial resolution. In conclusion, the novel approach to velocity distribution measurement based on TDLAS-Doppler from multiple projections has great potential applications in engine diagnosis and gas dynamic research.
-
Keywords:
- tunable diode laser absorption spectroscopy /
- Doppler effect /
- Fourier transform /
- velocity distribution
[1] Zhang D, Zhao H, Yang J A 2019 Optik 186 155Google Scholar
[2] 张伟, 沈岩, 余西龙, 姚兆普, 王梦, 曾徽, 李飞, 张少华 2015 推进技术 36 651
Zhang W, Shen Y, Yu X L, Yao Z P, Wang M, Zeng H, Li F, Zhang S H 2015 J. Propul. Technol. 36 651
[3] 杨斌, 齐宗满, 杨荟楠, 黄斌, 刘佩进 2015 燃烧科学与技术 21 516
Yang B, Qi Z M, Yang H N, Huang B, Liu P J 2015 J. Combust. Sci. Technol. 21 516
[4] 吕晓静, 李宁, 翁春生 2016 光谱学与光谱分析 36 624
Lv X J, Li N, Weng C S 2016 Spectrosc. Spect. Anal. 36 624
[5] Hanson R K 2011 Proc. Combust. Inst. 33 1Google Scholar
[6] Li H, Farooq A, Jeffries J B, Hanson R K 2007 Appl. Phys. B 89 407
[7] 洪延姬, 宋俊玲, 饶伟, 王广宇 2018 实验流体力学 32 43
Hong Y J, Song J L, Rao W, Wang G Y 2018 J. Exper. Fluid Mech. 32 43
[8] 刘佩进, 王志新, 杨斌, 魏祥庚 2017 光谱学与光谱分析 37 532
Liu P J, Wang Z X, Yang B, Wei X G 2017 Spectrosc. Spect. Anal. 37 532
[9] 阚瑞峰, 夏晖晖, 许振宇, 姚路, 阮俊, 范雪丽 2018 中国激光 45 1
Kan R F, Xia H H, Xu Z Y, Yao L, Ruan J, Fan X L 2018 Chin. J. Lasers 45 1
[10] 张亮, 刘建国, 阚瑞峰, 刘文清, 张玉钧, 许振宇, 陈军 2012 61 034214Google Scholar
Zhang L, Liu J G, Kan R F, Liu W Q, Zhang Y J, Xu Z Y, Chen J 2012 Acta. Phys. Sin. 61 034214Google Scholar
[11] Xu Z Y, Kan R F, Ran J, Yao L, Fan X L, Liu J G 2016 Light, Energy Environ Congr. ETu2 A.4
[12] 姚路, 姚德龙, 仪建华, 阚瑞峰, 杨燕京, 许振宇, 阮俊, 刘建国 2016 火炸药学报 39 35
Yao L, Yao D L, Yi J H, Kan R F, Yang Y J, Xu Z Y, Ruan J, Liu J G 2016 Chin. J. Explos. Propellants 39 35
[13] Li F, Yu X L, Cai W W, Ma L 2012 Appl. Opt. 51 4788Google Scholar
[14] Li F, Yu X L, Gu H B, Li Z, Chen L H, Chang X Y 2011 17th AIAA International Space Planes and Hypersonic Systems and Technologies Conference San Francisco, USA, April 11−14, 2011 p2214
[15] Chang L S, Strand C L, Jeffries J B, Hanson R K 2011 AIAA J. 49 2783
[16] Chang L S, Jeffries J B, Hanson R K 2010 AIAA J. 49 2687
[17] Gamba M 2015 53rd AIAA Aerospace Sciences Meeting Kissimmee, USA, January 5−9, 2015 p1222
[18] Qu Q W, Cao Z, Xu L J, Liu C, Chang L Y, McCann H 2019 Appl. Opt. 58 205Google Scholar
[19] Qu Q W, Gao S, Chang L Y, Xu L J 2019 Appl. Phys. B 125 128
[20] Xiang R, Wang C, Lu L 2019 J. Opt 48 384Google Scholar
-
图 5 60°光路投影条件下
$\Delta {\nu_{{{\rm{h}} \text{-}{\rm{l}}}, \theta }}$ 与Ah/Al的关系 (a)$\Delta {\nu_{{{\rm{h}} \text{-}{\rm{l}}}, \theta }}$ 随Ah/Al的变化; (b)$\Delta {\nu_{{{\rm{h}} \text{-}{\rm{l}}}, \theta }}$ 一阶导数随Ah/Al的变化Figure 5. Function relationship between
$\Delta {\nu_{{{\rm{h}} \text{-}{\rm{l}}}, \theta }}$ and Ah/Al at 60° optical path: (a)$\Delta {\nu_{{{\rm{h}} \text{-}{\rm{l}}}, \theta }}$ varies with Ah/Al; (b) 1 st derivative of$\Delta {\nu_{{{\rm{h}} \text{-}{\rm{l}}}, \theta }}$ varies with Ah/Al.表 1 不同角度组合下的计算结果
Table 1. Calculation results under different angle combinations.
投影角度 计算误差 θ1/(°) θ2/(°) Lh/% Vh/% Vl/% 10 20 16.23 7.07 18.92 10 40 15.84 6.88 18.71 10 60 15.84 6.84 18.78 10 80 15.84 6.81 18.84 20 40 15.21 6.58 18.15 20 60 8.74 3.71 12.08 20 80 4.75 2.01 7.35 30 60 2.52 1.07 4.16 30 80 1.74 0.73 2.96 40 60 1.37 0.58 2.36 40 80 1.01 0.42 1.77 表 2 不同速度下的计算结果
Table 2. Calculation results at different velocity.
模型流场参数 计算结果相对误差 Vh/m·s–1 Vl/m·s–1 Ah/Al Vh/% Vl/% Lh/% 1000 100 4 0.17 7.47 0.31 1000 100 1 4.74 53.32 14.44 800 300 4 1.60 20.14 4.08 800 300 1 9.56 37.01 17.53 600 300 4 4.32 62.07 19.41 600 300 1 15.15 77.73 36.63 -
[1] Zhang D, Zhao H, Yang J A 2019 Optik 186 155Google Scholar
[2] 张伟, 沈岩, 余西龙, 姚兆普, 王梦, 曾徽, 李飞, 张少华 2015 推进技术 36 651
Zhang W, Shen Y, Yu X L, Yao Z P, Wang M, Zeng H, Li F, Zhang S H 2015 J. Propul. Technol. 36 651
[3] 杨斌, 齐宗满, 杨荟楠, 黄斌, 刘佩进 2015 燃烧科学与技术 21 516
Yang B, Qi Z M, Yang H N, Huang B, Liu P J 2015 J. Combust. Sci. Technol. 21 516
[4] 吕晓静, 李宁, 翁春生 2016 光谱学与光谱分析 36 624
Lv X J, Li N, Weng C S 2016 Spectrosc. Spect. Anal. 36 624
[5] Hanson R K 2011 Proc. Combust. Inst. 33 1Google Scholar
[6] Li H, Farooq A, Jeffries J B, Hanson R K 2007 Appl. Phys. B 89 407
[7] 洪延姬, 宋俊玲, 饶伟, 王广宇 2018 实验流体力学 32 43
Hong Y J, Song J L, Rao W, Wang G Y 2018 J. Exper. Fluid Mech. 32 43
[8] 刘佩进, 王志新, 杨斌, 魏祥庚 2017 光谱学与光谱分析 37 532
Liu P J, Wang Z X, Yang B, Wei X G 2017 Spectrosc. Spect. Anal. 37 532
[9] 阚瑞峰, 夏晖晖, 许振宇, 姚路, 阮俊, 范雪丽 2018 中国激光 45 1
Kan R F, Xia H H, Xu Z Y, Yao L, Ruan J, Fan X L 2018 Chin. J. Lasers 45 1
[10] 张亮, 刘建国, 阚瑞峰, 刘文清, 张玉钧, 许振宇, 陈军 2012 61 034214Google Scholar
Zhang L, Liu J G, Kan R F, Liu W Q, Zhang Y J, Xu Z Y, Chen J 2012 Acta. Phys. Sin. 61 034214Google Scholar
[11] Xu Z Y, Kan R F, Ran J, Yao L, Fan X L, Liu J G 2016 Light, Energy Environ Congr. ETu2 A.4
[12] 姚路, 姚德龙, 仪建华, 阚瑞峰, 杨燕京, 许振宇, 阮俊, 刘建国 2016 火炸药学报 39 35
Yao L, Yao D L, Yi J H, Kan R F, Yang Y J, Xu Z Y, Ruan J, Liu J G 2016 Chin. J. Explos. Propellants 39 35
[13] Li F, Yu X L, Cai W W, Ma L 2012 Appl. Opt. 51 4788Google Scholar
[14] Li F, Yu X L, Gu H B, Li Z, Chen L H, Chang X Y 2011 17th AIAA International Space Planes and Hypersonic Systems and Technologies Conference San Francisco, USA, April 11−14, 2011 p2214
[15] Chang L S, Strand C L, Jeffries J B, Hanson R K 2011 AIAA J. 49 2783
[16] Chang L S, Jeffries J B, Hanson R K 2010 AIAA J. 49 2687
[17] Gamba M 2015 53rd AIAA Aerospace Sciences Meeting Kissimmee, USA, January 5−9, 2015 p1222
[18] Qu Q W, Cao Z, Xu L J, Liu C, Chang L Y, McCann H 2019 Appl. Opt. 58 205Google Scholar
[19] Qu Q W, Gao S, Chang L Y, Xu L J 2019 Appl. Phys. B 125 128
[20] Xiang R, Wang C, Lu L 2019 J. Opt 48 384Google Scholar
Catalog
Metrics
- Abstract views: 7137
- PDF Downloads: 70
- Cited By: 0