搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于麦克风的气体超声分子束飞行速度的实验研究

周茂蕾 刘东 曲国峰 陈桎远 李敏 王艺舟 徐子虚 韩纪锋

引用本文:
Citation:

基于麦克风的气体超声分子束飞行速度的实验研究

周茂蕾, 刘东, 曲国峰, 陈桎远, 李敏, 王艺舟, 徐子虚, 韩纪锋

Experimental study on velocity of supersonic molecular beam based on microphone

Zhou Mao-Lei, Liu Dong, Qu Guo-Feng, Chen Zhi-Yuan, Li Min, Wang Yi-Zhou, Xu Zi-Xu, Han Ji-Feng
PDF
HTML
导出引用
  • 超声分子束的膨胀和输运过程是一个较为复杂的分子动力学问题, 相关的参数较难准确计算. 本文基于麦克风测量方法研究了多种气体(H2, D2, N2, Ar, He, CH4)超声分子束在自由膨胀过程中的平均速度及其沿出射方向在远域空间(喷射距离/喷嘴直径>310)的演变情况, 获得了较大范围内分子束平均速度分布随气体种类、温度、气压和膨胀距离的变化规律. 结果表明, H2, D2, He分子束的速度分别只占各自理论极限速度的54%, 60%和68%, 且在远域空间速度下降较快. 而CH4, N2和Ar分子束的速度与其各自的极限速度十分接近, 占比分别为85%, 92%和99%, 且在远域空间速度下降较缓.
    The expansion and transportation of supersonic molecular beams is a complex process of molecular dynamics, and the related parameters are difficult to calculate accurately. Currently there is no rigorous theory to accurately predict the beam expansion process under specific valve conditions, and current researches are less concerned with the spatial evolution of supersonic molecular beam characteristics over long distance. In addition, time-of-flight mass spectrometry is not well suitable for supersonic molecular beam injection in the field of magnetic confinement fusion. Therefore, based on microphone measurements, the average velocities of several supersonic molecular beams (H2, D2, N2, Ar, He, CH4) in the process of free expansion and their evolutions in the far-field space (flight distance/nozzle diameter > 310) are studied in this work. The variations of velocity distribution with gas type, temperature, pressure and expansion distance are obtained. The results show that the velocities of H2, D2 and He beams account for only 54%, 60% and 68% of their ideal limit velocities, respectively, and their velocities decrease rapidly in the far-field space. The velocities of CH4, N2 and Ar beams are very close to their limit velocities, accounting for 85%, 92% and 99% respectively, and their velocities decrease slowly in the far-field space. And the results show that the velocities of the H2 and D2 beams increase with the source pressure, while the velocities of the other four molecular beams decrease slightly with the source pressure. And it is found that the velocity of supersonic beam without skimmer is negatively correlated with the square root of the molecular mass. For the effect of temperature on velocity, the results show that the velocities of H2 and D2 beams increase with the source temperature but are smaller than their limit velocities at given temperature, and the difference is larger for higher temperature. The results of this experiment provide basic data for controlling the parameters of the supersonic molecular beam by adjusting the temperature and pressure of the gas source, which will contribute to the application of supersonic molecular beams in fusion reactor fueling technology. And this study will contribute to further exploration of the evolution of supersonic molecular beam properties in the far-field space.
      通信作者: 曲国峰, quguofeng@scu.edu.cn ; 韩纪锋, hanjf@scu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11575121)和中国国家热核聚变专项(批准号: 2014GB125004)资助的课题.
      Corresponding author: Qu Guo-Feng, quguofeng@scu.edu.cn ; Han Ji-Feng, hanjf@scu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11575121) and the National Magnetic Confinement Fusion Program of China (Grant No. 2014GB125004).
    [1]

    Dunning F B, Hulet R G 1996 Atomic, Molecular, and Optical Physics: Atoms and Molecules (London: Academic Press) Volume 29B, p435

    [2]

    赵健华, 刘晓敏, 刘培启, 胡大鹏 2015 化工机械 42 59

    Zhao J H, Liu X M, Liu P Q, Hu D P 2015 Chem. Mach. 42 59

    [3]

    Farias D, Rieder K 1998 Rep. Prog. Phys. 61 1575Google Scholar

    [4]

    Smalley R E, Ramakrishna B L, Levy D H, Wharton L 1974 J. Chem. Phys. 61 4363Google Scholar

    [5]

    姚良骅, 冯北滨, 冯震, 董贾福, 郦文忠, 徐德明, 洪文玉 2002 51 596

    Yao L H, Feng B B, Feng Z, Dong J F, Li W Z, Xu D M, Hong W Y 2002 Acta Phys. Sin. 51 596

    [6]

    姚良骅, 冯北滨, 陈程远, 冯震, 李伟, 焦一鸣 2008 57 4159

    Yao L H, Feng B B, Chen C Y, Feng Z, Li W, Jiao Y M 2008 Acta Phys. Sin. 57 4159

    [7]

    Soukhanovskii V A, Kugel H W, Kaita R, Majeski R, Roquemore A L 2004 Rev. Sci. Instrum. 75 4320Google Scholar

    [8]

    Ekinci Y, Knuth E L, Toennies J P 2006 J. Chem. Phys. 125 133409Google Scholar

    [9]

    Christen W, Krause T, Rademann K 2007 Rev. Sci. Instrum. 78 73106Google Scholar

    [10]

    吴雪科, 孙小琴, 刘殷学, 李会东, 周雨林, 王占辉, 冯灏 2017 66 195201

    Wu X K, Sun X Q, Liu Y X, Li H D, Zhou Y L, Wang Z H, Feng H 2017 Acta Phys. Sin. 66 195201

    [11]

    董贾福, 唐年益, 李伟, 罗俊林, 郭干诚, 钟云泽, 刘仪, 傅炳忠, 姚良骅, 冯北滨, 秦运文 2002 51 2074

    Dong J F, Tang N Y, Li W, Luo J L, Guo G C, Zhong Y Z, Liu Y, Fu B Z, Yao L H, Feng B B, Qin Y W 2002 Acta Phys. Sin. 51 2074

    [12]

    Wang Z H, Xu X Q, Xia T Y, Rognlien T D 2014 Nucl. Fusion 54 43019Google Scholar

    [13]

    Zhou Y L, Wang Z H, Xu M, Wang Q, Nie L 2016 Chin. Phys. B 25 106601

    [14]

    Zhou Y L, Wang Z H, Xu X Q, Li H D, Feng H, Sun W G 2015 Phys. Plasmas 22 12503Google Scholar

    [15]

    Hagena O F, Varma A K 1968 Rev. Sci. Instrum. 39 47Google Scholar

    [16]

    Haberland H, Buck U, Tolle M 1985 Rev. Sci. Instrum. 56 1712Google Scholar

    [17]

    Christen W, Krause T, Kobin B, Rademann K 2011 J. Phys. Chem. A 115 6997Google Scholar

    [18]

    Christen W 2013 J. Chem. Phys. 139 24202Google Scholar

    [19]

    Irie T, Asunobu T Y, Kashimura H 2003 J. Therm. Sci. 12 132Google Scholar

    [20]

    Tejeda G, Mate B, Fernandez-Sanchez J M, Montero S 1996 Phys. Rev. Lett. 76 34Google Scholar

    [21]

    Teshima K, Sommerfeld M 1987 Exp. Fluids 5 197Google Scholar

    [22]

    Belan M A D P 2004 Astrophys. Space Sci. 293 225Google Scholar

    [23]

    Even U 2014 Adv. Chem. 2014 636042

    [24]

    Wei G, Zhu R, Cheng T, Zhao F 2016 J. Iron Steel Res. Int. 23 997Google Scholar

    [25]

    Christen W, Rademann K, Even U 2010 J. Phys. Chem. A 114 11189Google Scholar

    [26]

    Kornilov O, Toennies J P 2009 Int. J. Mass Spectrom. 280 209Google Scholar

    [27]

    Reisinger T, Greve M M, Eder S D, Bracco G, Holst B 2012 Phys. Rev. A 86 043804Google Scholar

    [28]

    Christen W, Rademann K 2009 Phys. Scripta 80 48127Google Scholar

    [29]

    He L, Yi S, Zhao Y, Tian L, Chen Z 2011 Sci. China: Phys. Mech. Astron. 54 1702Google Scholar

    [30]

    Kerhervé F, Jordan P, Gervais Y, Valière J C, Braud P 2004 Exp. Fluids 37 419Google Scholar

    [31]

    Liu D, Han J F, Chen Z Y, Bai L X, Zhou J X 2016 Rev. Sci. Instrum. 87 123504Google Scholar

    [32]

    Chen Z, Li M, Zhou M, Liu D, Qu G, Wang Y, Han J 2019 J. Fusion Energ. 38 228

    [33]

    Han J, Yang C, Miao J, Fu P, Luo X, Shi M 2010 J. Appl. Phys. 108 64327Google Scholar

    [34]

    Liepmann H W, Roshko A 2001 Elements of Gasdynamics ( New York: Courier Corporation)

    [35]

    赵大为 2009 硕士学位论文(成都: 电子科技大学)

    Zhao D W 2009 M. S. Thesis (Chengdu: University of Electronic Science and Technology of China) (in Chinese)

    [36]

    Eder S D, Salvador Palau A, Kaltenbacher T, Bracco G, Holst B 2018 Rev. Sci. Instrum. 89 113301Google Scholar

    [37]

    Hagena O F, Obert W 1972 J. Chem. Phys. 56 1793Google Scholar

    [38]

    Smith R A, Ditmire T, Tisch J W G 1998 Rev. Sci. Instrum. 69 3798Google Scholar

    [39]

    Akiyoshi M, Junichi M, Tsuchiya H 2010 J. Plasma Fusion Res. SERIES 9 79

  • 图 1  超声分子束速度测量装置示意图

    Fig. 1.  Schematic diagram of supersonic molecular beam velocity measuring device.

    图 2  多次测量定时误差 (a)和频率分布直方图(b)

    Fig. 2.  Timing error (a) and frequency distribution histogram (b) of multiple measurements

    图 3  压强P0为50 bar时, 超声分子束速度随轴向距离的变化规律 (a) H2, D2和He的速度结果; (b) N2, Ar和CH4的速度结果

    Fig. 3.  The velocity of the supersonic molecular beam varies with the axial distance when the pressure P0 was 50 bar: (a) The velocity results of H2,D2 and He; (b) the velocity results of N2,Ar and CH4.

    图 4  H2, D2和He分子束(a), 以及N2, Ar和CH4分子束(b)的飞行速度随源压强的变化曲线

    Fig. 4.  The curves of the velocities of H2, D2 and He molecular beams (a) and N2, Ar and CH4 molecular beams (b) with pressure.

    图 5  六种超声分子束的速度与分子量之间的关系 实心方形■代表在50 bar源压强下速度的测量结果, 空心圆○代表估算的极限速度结果

    Fig. 5.  The relationship between the velocities of the six supersonic molecular beams and their molecular weights. The solid square ■ represents the measured velocity at 50 bar source pressure, and the hollow circle ○ represents the estimated limit velocity.

    图 6  H2(a), D2(b)超声束速度随温度的变化结果

    Fig. 6.  The variation of supersonic H2(a) and D2(b) beam velocity with temperature.

    表 1  H2, D2, N2, Ar, He和CH4的实验拟合速度和各自极限速度的对比

    Table 1.  Comparison of the experimental fitting velocities and the limit velocities of H2, D2, N2, Ar, He and CH4.

    GasH2D2N2ArHeCH4
    T/℃222624262424
    vfit/m·s–11392—15721083—1234609—727497—5561048—1174847—984
    vlim/m·s–12931208678655717571157
    下载: 导出CSV
    Baidu
  • [1]

    Dunning F B, Hulet R G 1996 Atomic, Molecular, and Optical Physics: Atoms and Molecules (London: Academic Press) Volume 29B, p435

    [2]

    赵健华, 刘晓敏, 刘培启, 胡大鹏 2015 化工机械 42 59

    Zhao J H, Liu X M, Liu P Q, Hu D P 2015 Chem. Mach. 42 59

    [3]

    Farias D, Rieder K 1998 Rep. Prog. Phys. 61 1575Google Scholar

    [4]

    Smalley R E, Ramakrishna B L, Levy D H, Wharton L 1974 J. Chem. Phys. 61 4363Google Scholar

    [5]

    姚良骅, 冯北滨, 冯震, 董贾福, 郦文忠, 徐德明, 洪文玉 2002 51 596

    Yao L H, Feng B B, Feng Z, Dong J F, Li W Z, Xu D M, Hong W Y 2002 Acta Phys. Sin. 51 596

    [6]

    姚良骅, 冯北滨, 陈程远, 冯震, 李伟, 焦一鸣 2008 57 4159

    Yao L H, Feng B B, Chen C Y, Feng Z, Li W, Jiao Y M 2008 Acta Phys. Sin. 57 4159

    [7]

    Soukhanovskii V A, Kugel H W, Kaita R, Majeski R, Roquemore A L 2004 Rev. Sci. Instrum. 75 4320Google Scholar

    [8]

    Ekinci Y, Knuth E L, Toennies J P 2006 J. Chem. Phys. 125 133409Google Scholar

    [9]

    Christen W, Krause T, Rademann K 2007 Rev. Sci. Instrum. 78 73106Google Scholar

    [10]

    吴雪科, 孙小琴, 刘殷学, 李会东, 周雨林, 王占辉, 冯灏 2017 66 195201

    Wu X K, Sun X Q, Liu Y X, Li H D, Zhou Y L, Wang Z H, Feng H 2017 Acta Phys. Sin. 66 195201

    [11]

    董贾福, 唐年益, 李伟, 罗俊林, 郭干诚, 钟云泽, 刘仪, 傅炳忠, 姚良骅, 冯北滨, 秦运文 2002 51 2074

    Dong J F, Tang N Y, Li W, Luo J L, Guo G C, Zhong Y Z, Liu Y, Fu B Z, Yao L H, Feng B B, Qin Y W 2002 Acta Phys. Sin. 51 2074

    [12]

    Wang Z H, Xu X Q, Xia T Y, Rognlien T D 2014 Nucl. Fusion 54 43019Google Scholar

    [13]

    Zhou Y L, Wang Z H, Xu M, Wang Q, Nie L 2016 Chin. Phys. B 25 106601

    [14]

    Zhou Y L, Wang Z H, Xu X Q, Li H D, Feng H, Sun W G 2015 Phys. Plasmas 22 12503Google Scholar

    [15]

    Hagena O F, Varma A K 1968 Rev. Sci. Instrum. 39 47Google Scholar

    [16]

    Haberland H, Buck U, Tolle M 1985 Rev. Sci. Instrum. 56 1712Google Scholar

    [17]

    Christen W, Krause T, Kobin B, Rademann K 2011 J. Phys. Chem. A 115 6997Google Scholar

    [18]

    Christen W 2013 J. Chem. Phys. 139 24202Google Scholar

    [19]

    Irie T, Asunobu T Y, Kashimura H 2003 J. Therm. Sci. 12 132Google Scholar

    [20]

    Tejeda G, Mate B, Fernandez-Sanchez J M, Montero S 1996 Phys. Rev. Lett. 76 34Google Scholar

    [21]

    Teshima K, Sommerfeld M 1987 Exp. Fluids 5 197Google Scholar

    [22]

    Belan M A D P 2004 Astrophys. Space Sci. 293 225Google Scholar

    [23]

    Even U 2014 Adv. Chem. 2014 636042

    [24]

    Wei G, Zhu R, Cheng T, Zhao F 2016 J. Iron Steel Res. Int. 23 997Google Scholar

    [25]

    Christen W, Rademann K, Even U 2010 J. Phys. Chem. A 114 11189Google Scholar

    [26]

    Kornilov O, Toennies J P 2009 Int. J. Mass Spectrom. 280 209Google Scholar

    [27]

    Reisinger T, Greve M M, Eder S D, Bracco G, Holst B 2012 Phys. Rev. A 86 043804Google Scholar

    [28]

    Christen W, Rademann K 2009 Phys. Scripta 80 48127Google Scholar

    [29]

    He L, Yi S, Zhao Y, Tian L, Chen Z 2011 Sci. China: Phys. Mech. Astron. 54 1702Google Scholar

    [30]

    Kerhervé F, Jordan P, Gervais Y, Valière J C, Braud P 2004 Exp. Fluids 37 419Google Scholar

    [31]

    Liu D, Han J F, Chen Z Y, Bai L X, Zhou J X 2016 Rev. Sci. Instrum. 87 123504Google Scholar

    [32]

    Chen Z, Li M, Zhou M, Liu D, Qu G, Wang Y, Han J 2019 J. Fusion Energ. 38 228

    [33]

    Han J, Yang C, Miao J, Fu P, Luo X, Shi M 2010 J. Appl. Phys. 108 64327Google Scholar

    [34]

    Liepmann H W, Roshko A 2001 Elements of Gasdynamics ( New York: Courier Corporation)

    [35]

    赵大为 2009 硕士学位论文(成都: 电子科技大学)

    Zhao D W 2009 M. S. Thesis (Chengdu: University of Electronic Science and Technology of China) (in Chinese)

    [36]

    Eder S D, Salvador Palau A, Kaltenbacher T, Bracco G, Holst B 2018 Rev. Sci. Instrum. 89 113301Google Scholar

    [37]

    Hagena O F, Obert W 1972 J. Chem. Phys. 56 1793Google Scholar

    [38]

    Smith R A, Ditmire T, Tisch J W G 1998 Rev. Sci. Instrum. 69 3798Google Scholar

    [39]

    Akiyoshi M, Junichi M, Tsuchiya H 2010 J. Plasma Fusion Res. SERIES 9 79

  • [1] 刘欣, 蔡宸, 董志飞, 邓欣, 胡昕宇, 祁志美. 基于硅基微电子机械系统仿生振膜的光纤麦克风.  , 2022, 71(9): 094301. doi: 10.7498/aps.71.20212229
    [2] 殷娇, 肖国梁, 陈程远, 冯北滨, 张轶泼, 钟武律. 用于超声分子束束流特性测试的纹影系统研制及应用.  , 2020, 69(21): 215202. doi: 10.7498/aps.69.20201383
    [3] 王传位, 李宁, 黄孝龙, 翁春生. 基于多角度投影激光吸收光谱技术的两段式速度分布流场测试方法.  , 2019, 68(24): 247801. doi: 10.7498/aps.68.20191223
    [4] 吴雪科, 孙小琴, 刘殷学, 李会东, 周雨林, 王占辉, 冯灏. 超声分子束注入密度和宽度对托克马克装置加料深度的影响.  , 2017, 66(19): 195201. doi: 10.7498/aps.66.195201
    [5] 裴晓阳, 彭辉, 贺红亮, 李平. 延性金属层裂自由面速度曲线物理涵义解读.  , 2015, 64(3): 034601. doi: 10.7498/aps.64.034601
    [6] 郭业才, 张宁, 吴礼福, 孙心宇. 基于自适应加权约束最小二乘法的麦克风阵列稳健频率不变波束形成算法.  , 2015, 64(17): 174303. doi: 10.7498/aps.64.174303
    [7] 唐雄贵, 廖进昆, 李和平, 刘永, 刘永智. 基于热膨胀效应的可调光功率分束器设计.  , 2013, 62(2): 024218. doi: 10.7498/aps.62.024218
    [8] 张强, 陈鑫, 何立明, 荣康. 矩形喷口欠膨胀超声速射流对撞的实验研究.  , 2013, 62(8): 084706. doi: 10.7498/aps.62.084706
    [9] 冯北滨, 姚良骅, 陈程远, 季小全, 钟武律, 石中兵, 余德良, 崔正英, 宋显明, 段旭如. HL-2A装置上超声分子束注入触发L-H转换的实验研究.  , 2013, 62(1): 015203. doi: 10.7498/aps.62.015203
    [10] 徐岩, 樊炜, 陈兵, 南向红, 陈达, 周强, 张鲁殷. 自由膨胀准二维玻色-爱因斯坦凝聚中的密度-密度关联.  , 2013, 62(21): 216701. doi: 10.7498/aps.62.216701
    [11] 郑星炜, 李建刚, 胡建生, 李加宏, 曹斌, 吴金华. 基于超声分子束和普通充气的聚变等离子体密度反馈实验研究.  , 2013, 62(15): 155202. doi: 10.7498/aps.62.155202
    [12] 王心亮, 陈洁, 王叶兵, 高峰, 张首刚, 刘海峰, 常宏. 利用塞曼扫频法实现对减速锶原子束速度分布的直接测量.  , 2011, 60(10): 103201. doi: 10.7498/aps.60.103201
    [13] 焦一鸣, 姚良骅, 冯北滨, 陈程远, 周艳, 石中兵, 董家齐, 段旭如. 强场和弱场侧超声分子束注入对加料的影响.  , 2010, 59(10): 7191-7197. doi: 10.7498/aps.59.7191
    [14] 丁学成, 傅广生, 梁伟华, 褚立志, 邓泽超, 王英龙. 初始溅射粒子密度对烧蚀粒子密度和速度分布的影响.  , 2010, 59(5): 3331-3335. doi: 10.7498/aps.59.3331
    [15] 姚良骅, 冯北滨, 陈程远, 冯 震, 李 伟, 焦一鸣. 中国环流器二号A(HL-2A)超声分子束注入最新结果.  , 2008, 57(7): 4159-4165. doi: 10.7498/aps.57.4159
    [16] 石中兵, 姚良骅, 丁玄同, 段旭如, 冯北滨, 刘泽田, 肖维文, 孙红娟, 李 旭, 李 伟, 陈程远, 焦一鸣. HL-2A托卡马克超声分子束注入深度和加料效果研究.  , 2007, 56(8): 4771-4777. doi: 10.7498/aps.56.4771
    [17] 焦一鸣, 周艳, 姚良骅, 董家齐. 超声分子束在HL-1M托卡马克等离子体中的消融和穿透.  , 2004, 53(4): 1123-1128. doi: 10.7498/aps.53.1123
    [18] 董贾福, 唐年益, 李伟, 罗俊林, 郭干诚, 钟云泽, 刘仪, 傅炳忠, 姚良骅, 冯北滨, 秦运文. HL-1M装置超声分子束注入等离子体穿透特性的诊断.  , 2002, 51(9): 2074-2079. doi: 10.7498/aps.51.2074
    [19] 姚良骅, 冯北滨, 冯震, 董贾福, 郦文忠, 徐德明, 洪文玉. HL-1M装置高气压超声分子束加料效果.  , 2002, 51(3): 596-602. doi: 10.7498/aps.51.596
    [20] 张钧, 古培俊. 三温与多温电子等离子体的自由膨胀与快离子的产生.  , 1993, 42(7): 1098-1105. doi: 10.7498/aps.42.1098
计量
  • 文章访问数:  7801
  • PDF下载量:  78
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-27
  • 修回日期:  2019-05-16
  • 上网日期:  2019-08-01
  • 刊出日期:  2019-08-20

/

返回文章
返回
Baidu
map