-
Gallium nitride (GaN) nanobelt with a quasi-one-dimensional structure possesses good piezoelectric and photoelectric properties. In this paper, the electromechanical coupling properties of single GaN nanobelt under optical modulation are studied by conductive atomic force microscope. The GaN nanobelts with good crystallization are prepared by the chemical vapor deposition method, then they are ultrasonically dispersed on a highly oriented pyrolysis graphite substrate. The conductive probe is used as a microelectrode to construct the two-terminal piezoelectric device based on a single GaN nanobelt, which has good electromechanical coupling performance. By changing the loading force of the probe and introducing an external light source to regulate the current transport properties of GaN nanobelt, the coupling between mechanical and semiconducting properties under light modulating is studied. It is found that the coupling between mechanical and semiconducting performance of the single GaN nanobelt can be effectively modulated by an external light source, and the electromechanical switch ratio of the single GaN nanobelt increases obviously in the presence of light. With the loading force increasing, the current response of the single GaN nanobelt increases but the rectification characteristics decrease. Finally, the experimental results are explained by the piezoelectric electronics and photoconductivity theory. This work is expected to provide a scientific basis for the performance modulation of nano-piezoelectric optoelectronic devices based on low-dimensional GaN nanomaterials.
[1] Johnson J C, Choi H J, Knutsen K P, Schaller R D, Yang P D, Saykally R J 2002 Nature Mater. 1 106Google Scholar
[2] Kang M S, Lee C H, Park J B, Yoo H, Yi G C 2012 Nano Energy 1 391Google Scholar
[3] Kim H M, Cho Y H, Lee H, Kim S I, Ryu S R, Kim D Y, Kang T W, Chung K S 2004 Nano Lett. 4 1059Google Scholar
[4] Sun S X, Wei Z C, Xia P H, Wang W B, Duan Z Y, Li Y X, Zhong Y H, Ding P, Jin Z 2018 Chin. Phys. B 27 28502Google Scholar
[5] Zhao S L, Wang Z Z, Chen Z D, Wang M J, Dai Y, Ma X H, Zhang J C, Hao Y 2019 Chin. Phys. B 28 27301Google Scholar
[6] Hou M C, Xie G, Sheng K 2019 Chin. Phys. B 28 37302Google Scholar
[7] Gon M J, Wang Q, Yan J D, Liu F Q, Feng C, Wang X L, Wang Z G 2016 Chin. Phys. Lett. 33 117303Google Scholar
[8] 周幸叶, 吕元杰, 谭鑫, 王元刚, 宋旭波, 何泽召, 张志荣, 刘庆彬, 韩婷婷, 房玉龙, 冯志红 2018 67 178501Google Scholar
Zhou X Y, Lv Y J, Tan X, Wang Y G, Song X B, He Z Z, Zhang Z R, Liu Q B, Han T T, Fang Y L, Feng Z H 2018 Acta Phys. Sin. 67 178501Google Scholar
[9] Holmes M J, Choi K, Kako S, Arita M, Arakawa, Y 2014 Nano Lett. 14 982Google Scholar
[10] Fu K, Fu H Q, Huang X Q, Yang T H, Chen H, Baranowski I, Montes J, Yang C, Zhou J G, Zhao Y J 2019 IEEE Electron Device Lett. 40 375Google Scholar
[11] Tchoe Y, Jo J, Kim M, Heo J, Yoo G, Sone C, Yi G C 2014 Adv. Mater. 26 3019Google Scholar
[12] Tyagi P, Ramesh C, Sharma A, Husale S, Kushvaha S S, Senthil Kumar M 2019 Mater. Sci. Semicond. Process. 97 80Google Scholar
[13] Hu W G, Kalantar-Zadeh K, Gupta K, Liu C P 2018 MRS Bull. 43 936Google Scholar
[14] Goswami L, Pandey R, Gupta G 2018 Appl. Surf. Sci. 449 186Google Scholar
[15] Aggarwal N, Krishna S, Jain S K, Arora A, Goswami L, Sharma A, Husale S, Gundimeda A, Gupta G 2019 J. Alloys Compd. 785 883Google Scholar
[16] Huang J Y, Zheng H, Mao S X, Li Q, Wang G T 2011 Nano Lett. 11 1618Google Scholar
[17] Yu R M, Dong L, Pan C F, Niu S M, Liu H F, Liu W, Chua S, Chi D Z, Wang Z L 2012 Adv. Mater. 24 3532Google Scholar
[18] Yu R M, Wu W Z, Ding Y, Wang Z L 2013 ACS Nano 7 6403Google Scholar
[19] Peng M Z, Liu Y D, Yu A F, Zhang Y, Liu C H, Liu J Y, Wu W, Zhang K, Shi X Q, Kou J Z, Zhai J Y, Wang Z L 2016 ACS Nano 10 1572Google Scholar
[20] Wang X F, Yu R M, Peng W B, Wu W Z, Li S T, Wang Z L 2015 Adv. Mater. 27 8067Google Scholar
[21] Du C H, Jiang C Y, Zuo P, Huang X, Pu X, Zhao Z F, Zhou Y L, Li L X, Chen H, Hu W G, Wang Z L 2015 Small 11 6071Google Scholar
[22] Liu H T, Hua Q L, Yu R M, Yang Y C, Zhang T P, Zhang Y J, Pan C F 2016 Adv. Funct. Mater. 26 5307Google Scholar
[23] Lin F, Chen S W, Meng J, Tse G, Fu X W, Xu F J, Shen B, Liao Z M, Yu D P 2014 Appl. Phys. Lett. 105 073103Google Scholar
[24] Zhao Z F, Pu X, Han C B, Du C H, Li L X, Jiang C Y, Hu W G, Wang Z L 2015 ACS Nano 9 8578Google Scholar
[25] Wang S J, Cheng G, Cheng K, Jiang X H, Du Z L 2011 Nanoscale Res. Lett. 6 541Google Scholar
[26] Yang Y, Qi J J, Gu Y S, Guo W, Zhang Y 2010 Appl. Phys. Lett. 96 123103Google Scholar
[27] Zhang S, Gao L, Song A S, Zheng X H, Yao Q Z, Ma T B, Di Z F, Feng X Q, Li Q Y 2018 Nano Lett. 18 6030Google Scholar
[28] Wu D X, Cheng H B, Zheng X J, Wang X Y, Wang D, Li J 2015 Chin. Phys. Lett. 32 108102Google Scholar
[29] Yan X Y, Peng J F, Yan S A, Zheng X J 2018 J. Electron. Mater. 47 3869Google Scholar
[30] Sun X, Liu W B, Jiang D S, Liu Z S, Zhang S, Wang L L, Wang H, Zhu J J, Duan L H, Wang Y T, Zhao D G, Zhang S M, Yang H 2008 J. Phys. D: Appl. Phys. 41 165108Google Scholar
[31] Yang G, Li Y F, Yao B, Ding Z H, Deng R, Fang X, Wei Z P 2015 ACS Appl. Mater. Interfaces 7 16653Google Scholar
[32] Ryu S R, Ram S D G, Lee S J, Cho H D, Lee S, Kang T W, Kwon S, Yang W, Shin S, Woo Y 2015 Appl. Surf. Sci. 347 793Google Scholar
-
图 3 (a)−(c)暗场下单根GaN纳米带的二维电流形貌图, 加载力分别为30, 50, 70 nN; (e)−(f)光场下单根GaN纳米带的二维电流形貌图, 加载力分别为30, 50, 70 nN; 插图为电流形貌图截面处的电流值
Figure 3. (a)−(c) 2-D current topography of a single GaN nanobelt under dark condition with the loading forces of 30 nN, 50 nN and 70 nN, respectively; (d)−(f) 2-D current topography of a single GaN nanobelt under light condition with the loading forces of 30 nN, 50 nN and 70 nN, respectively. The insert shows the current value at the cross section of 2-D current topography.
图 4 GaN纳米带单点I-V曲线 (a), (b)暗场不同加载力下的I-V曲线及对数坐标形式; (c), (d)光场不同加载力下的I-V曲线及对数坐标形式
Figure 4. Single point I-V curves of a single GaN nanobelt: (a), (b) I-V curve and its logarithmic coordinate with different loading forces under dark condition; (c), (d) I-V curve and its logarithmic coordinate with different loading forces under light condition.
-
[1] Johnson J C, Choi H J, Knutsen K P, Schaller R D, Yang P D, Saykally R J 2002 Nature Mater. 1 106Google Scholar
[2] Kang M S, Lee C H, Park J B, Yoo H, Yi G C 2012 Nano Energy 1 391Google Scholar
[3] Kim H M, Cho Y H, Lee H, Kim S I, Ryu S R, Kim D Y, Kang T W, Chung K S 2004 Nano Lett. 4 1059Google Scholar
[4] Sun S X, Wei Z C, Xia P H, Wang W B, Duan Z Y, Li Y X, Zhong Y H, Ding P, Jin Z 2018 Chin. Phys. B 27 28502Google Scholar
[5] Zhao S L, Wang Z Z, Chen Z D, Wang M J, Dai Y, Ma X H, Zhang J C, Hao Y 2019 Chin. Phys. B 28 27301Google Scholar
[6] Hou M C, Xie G, Sheng K 2019 Chin. Phys. B 28 37302Google Scholar
[7] Gon M J, Wang Q, Yan J D, Liu F Q, Feng C, Wang X L, Wang Z G 2016 Chin. Phys. Lett. 33 117303Google Scholar
[8] 周幸叶, 吕元杰, 谭鑫, 王元刚, 宋旭波, 何泽召, 张志荣, 刘庆彬, 韩婷婷, 房玉龙, 冯志红 2018 67 178501Google Scholar
Zhou X Y, Lv Y J, Tan X, Wang Y G, Song X B, He Z Z, Zhang Z R, Liu Q B, Han T T, Fang Y L, Feng Z H 2018 Acta Phys. Sin. 67 178501Google Scholar
[9] Holmes M J, Choi K, Kako S, Arita M, Arakawa, Y 2014 Nano Lett. 14 982Google Scholar
[10] Fu K, Fu H Q, Huang X Q, Yang T H, Chen H, Baranowski I, Montes J, Yang C, Zhou J G, Zhao Y J 2019 IEEE Electron Device Lett. 40 375Google Scholar
[11] Tchoe Y, Jo J, Kim M, Heo J, Yoo G, Sone C, Yi G C 2014 Adv. Mater. 26 3019Google Scholar
[12] Tyagi P, Ramesh C, Sharma A, Husale S, Kushvaha S S, Senthil Kumar M 2019 Mater. Sci. Semicond. Process. 97 80Google Scholar
[13] Hu W G, Kalantar-Zadeh K, Gupta K, Liu C P 2018 MRS Bull. 43 936Google Scholar
[14] Goswami L, Pandey R, Gupta G 2018 Appl. Surf. Sci. 449 186Google Scholar
[15] Aggarwal N, Krishna S, Jain S K, Arora A, Goswami L, Sharma A, Husale S, Gundimeda A, Gupta G 2019 J. Alloys Compd. 785 883Google Scholar
[16] Huang J Y, Zheng H, Mao S X, Li Q, Wang G T 2011 Nano Lett. 11 1618Google Scholar
[17] Yu R M, Dong L, Pan C F, Niu S M, Liu H F, Liu W, Chua S, Chi D Z, Wang Z L 2012 Adv. Mater. 24 3532Google Scholar
[18] Yu R M, Wu W Z, Ding Y, Wang Z L 2013 ACS Nano 7 6403Google Scholar
[19] Peng M Z, Liu Y D, Yu A F, Zhang Y, Liu C H, Liu J Y, Wu W, Zhang K, Shi X Q, Kou J Z, Zhai J Y, Wang Z L 2016 ACS Nano 10 1572Google Scholar
[20] Wang X F, Yu R M, Peng W B, Wu W Z, Li S T, Wang Z L 2015 Adv. Mater. 27 8067Google Scholar
[21] Du C H, Jiang C Y, Zuo P, Huang X, Pu X, Zhao Z F, Zhou Y L, Li L X, Chen H, Hu W G, Wang Z L 2015 Small 11 6071Google Scholar
[22] Liu H T, Hua Q L, Yu R M, Yang Y C, Zhang T P, Zhang Y J, Pan C F 2016 Adv. Funct. Mater. 26 5307Google Scholar
[23] Lin F, Chen S W, Meng J, Tse G, Fu X W, Xu F J, Shen B, Liao Z M, Yu D P 2014 Appl. Phys. Lett. 105 073103Google Scholar
[24] Zhao Z F, Pu X, Han C B, Du C H, Li L X, Jiang C Y, Hu W G, Wang Z L 2015 ACS Nano 9 8578Google Scholar
[25] Wang S J, Cheng G, Cheng K, Jiang X H, Du Z L 2011 Nanoscale Res. Lett. 6 541Google Scholar
[26] Yang Y, Qi J J, Gu Y S, Guo W, Zhang Y 2010 Appl. Phys. Lett. 96 123103Google Scholar
[27] Zhang S, Gao L, Song A S, Zheng X H, Yao Q Z, Ma T B, Di Z F, Feng X Q, Li Q Y 2018 Nano Lett. 18 6030Google Scholar
[28] Wu D X, Cheng H B, Zheng X J, Wang X Y, Wang D, Li J 2015 Chin. Phys. Lett. 32 108102Google Scholar
[29] Yan X Y, Peng J F, Yan S A, Zheng X J 2018 J. Electron. Mater. 47 3869Google Scholar
[30] Sun X, Liu W B, Jiang D S, Liu Z S, Zhang S, Wang L L, Wang H, Zhu J J, Duan L H, Wang Y T, Zhao D G, Zhang S M, Yang H 2008 J. Phys. D: Appl. Phys. 41 165108Google Scholar
[31] Yang G, Li Y F, Yao B, Ding Z H, Deng R, Fang X, Wei Z P 2015 ACS Appl. Mater. Interfaces 7 16653Google Scholar
[32] Ryu S R, Ram S D G, Lee S J, Cho H D, Lee S, Kang T W, Kwon S, Yang W, Shin S, Woo Y 2015 Appl. Surf. Sci. 347 793Google Scholar
Catalog
Metrics
- Abstract views: 8326
- PDF Downloads: 92
- Cited By: 0