-
The electronic structures and optical properties of transition metal (TM, TM refers to Fe, Co, and Ni, respectively) doped GaSb are studied by the LDA+U method of the first-principles calculation. The results indicate that these TMs can enhance the absorption amplitudes of GaSb semiconductors in the infrared region, and improve the photocatalytic performances of GaSbs effectively. For the doped systems, TMs tend to substitute for Ga and form TM@Ga defect. The charge layout and bond population of TMs imply that the electric dipole moment induced by lattice distortion separates photoelectrons from holes to some degree, and consequently enhancing the photocatalytic performance. The impurity levels induced by TMs are close to the Fermi level, which illustrates that the imaginary part of complex dielectric function has the capability of response when the energy of photon is zero. Meanwhile, the static dielectric constant of the doped system is also enhanced compared with that of the un-doped system. The doped TMs can improve the optical properties of GaSb systems for three dopants effectively, but the Ni dopant is the best for the photocatalysis properties of GaSb in the three dopants. The further analysis shows that the uniform Ni can hinder the recombination of electron-hole pairs, and the optical absorption range and absorption peak are both biggest when Ni molar concentration is 10.94%, which is favorable for photocatalytic performance. Our results will extend the applications of GaSb to the fields of infrared thermal photovoltaic cells, infrared light detector, and infrared semiconductor laser.
-
Keywords:
- first-principles /
- GaSb /
- electronic structures /
- optical properties
[1] Qiu K, Hayden A C S 2006 Energy Convers. Manage 47 365Google Scholar
[2] Bitnar, Bernd 2003 Semicond. Sci. Technol. 18 S221Google Scholar
[3] Ferrari C, Melino F, Bosi M 2013 Sol. Energy Mater. Sol. Cells 113 20Google Scholar
[4] Attolini G, Bosi M, Ferrari C, Melino F 2013 Appl. Energy 103 618Google Scholar
[5] 王跃, 刘国军, 李俊承, 安宁, 李占国, 王玉霞, 魏志鹏 2012 中国激光 39 0102010
Wang Y, Liu G J, Li J C, An N, Li Z G, Wang Y X, Wei Z P 2012 Chin. J. Lasers 39 0102010
[6] Klipstein P C, Livneh Y, Glozman A, Grossman S, Klin O, Snapi N, Weiss E 2014 J. Electron. Mater. 43 2984Google Scholar
[7] del Alamo J A 2011 Nature 479 317Google Scholar
[8] Klipstein P C, Livneh Y, Klin O, Grossman S, Snapi N, Glozman A, Weiss E 2013 Infrared Phys. Technol. 59 53Google Scholar
[9] Baril N, Bandara S, Hoeglund L, Henry N, Brown A, Billman C, Maloney P, Nallon E, Tidrow M, Pellegrino J 2015 Infrared Phys. Technol. 70 58Google Scholar
[10] Delmas M, Rossignol R, Rodriguez J B, Christol P 2017 Superlattices Microstruct. 104 402Google Scholar
[11] Henry N C, Brown A, Knorr D B, Baril N, Nallon E, Lenhart J, Tidrow M, Bandara S 2016 Appl. Phys. Lett. 108 011606Google Scholar
[12] Huang Y, Xiong M, Wu Q, Dong X, Zhao Y C, Shi W H, Miao X H, Zhang B S 2017 IEEE J. Quantum Electron. 53 1
[13] Zhang Z K, Pan W W, Liu J L, Lei W 2019 Chin. Phys. B 28 018103Google Scholar
[14] 魏相飞, 何锐, 张刚, 刘向远 2018 67 187301Google Scholar
Wei X F, He R, Zhang G, Liu X Y 2018 Acta Phys. Sin. 67 187301Google Scholar
[15] Vurgaftman I, Meyer J R, Ram-Mohan L R 2001 J. Appl. Phys. 89 5815Google Scholar
[16] Khvostikov V P, Khvostikova O A, Gazaryan P Y, Sorokina S V, Potapovich N S, Malevskaya A V, Kaluzhniy N A, Shvarts M, Andreev V M 2007 J. Energy Eng. 129 291Google Scholar
[17] Vlasov A S, Khvostikov V P, Karlina L B, et al. 2013 Technol. Phys. 58 1034Google Scholar
[18] Wang Y, Chen N F, Zhang X W, Huang T M, Yin Z G, Wang Y S, Zhang H 2010 Sol. Energy Mater. Sol. Cells 94 1704Google Scholar
[19] Kim J M, Dutta P S, Brown E, Borrego J M, Greiff P 2013 Semicond. Sci. Technol. 28 065002Google Scholar
[20] Cederberg J G, Blaich J D, Girard G R, Lee S R, Nelson D P, Murray C S 2008 J. Cryst. Growth 310 3453Google Scholar
[21] Krier A, Yin M, Marshall A R J, Krier S E 2016 J. Electron. Mater. 45 1Google Scholar
[22] Qiu K, Hayden A C S 2014 Energy Convers. Manage. 79 54Google Scholar
[23] Qiu K, Hayden A C S, Mauk M G, Sulima O V 2006 Sol. Energy Mater. Sol. Cells 90 68Google Scholar
[24] Liu Z, Qiu K 2017 Energy 141 892
[25] Peng X, Zhang B, Li G, Zou J, Zhu Z, Cai Z 2011 Infrared Phys. Technol. 54 454Google Scholar
[26] Lou Y Y, Zhang X L, Huang A B, Wang Y 2017 Sol. Energy Mater. Sol. Cells 172 124Google Scholar
[27] Tang L, Fraas L M, Liu Z, Xu C, Chen X 2016 IEEE Trans. Electron Devices 63 3591Google Scholar
[28] Li M Z, Chen X L, Li H L, Zhang X H, Qi Z Y, Wang X X, Fan P, Zhang Q L, Zhu X L, Zhuang X J 2018 Chin. Phys. B 27 078101Google Scholar
[29] Ye H, Tang L, Li K 2013 Semicond. Sci. Technol. 28 015001Google Scholar
[30] 潘凤春, 林雪玲, 陈焕铭 2015 64 224218Google Scholar
Pan F C, Lin X L, Chen H M 2015 Acta Phys. Sin. 64 224218Google Scholar
[31] 张丽丽, 夏桐, 刘桂安, 雷博程, 赵旭才, 王少霞, 黄以能 2019 68 017401Google Scholar
Zhang L L, Xia T, Liu G A, Lei B C, Zhao X C, Wang S X, Huang Y N 2019 Acta Phys. Sin. 68 017401Google Scholar
[32] Perdew J P, Wang Y 1992 Phys. Rev. B 45 13244Google Scholar
[33] Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys. Condens. Matter 14 2717Google Scholar
[34] Pack J D, Monkhorst H J 1977 Phys. Rev. B 16 1748Google Scholar
[35] Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar
[36] 林雪玲, 潘凤春, 孙建军 2018 山东师范大学学报(自然科学版) 33 328Google Scholar
Lin X L, Pan F C, Sun J J 2018 J. Shandong Normal Univ. (Nat. Sci.)
33 328Google Scholar [37] Zota C B, Kim S H, Yokoyama M, Takenaka M, Takagi S 2012 Appl. Phys. Express 5 071201Google Scholar
[38] Yokoyama M, Nishi K, Kim S, Yokoyama H, Takenaka M, Takagi S 2014 Appl. Phys. Lett. 104 093509Google Scholar
[39] Tu N T, Hai P N, Anh L D, Tanaka M 2014 Appl. Phys. Lett. 105 132402Google Scholar
[40] Tu N T, Hai P N, Anh L D, Tanaka M 2016 Appl. Phys. Lett. 108 192401Google Scholar
[41] Lin X L, Pan F C 2019 Mater. Res. Express 6 015901
[42] Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar
[43] 黄昆 1988 固体物理学 (北京: 高等教育出版社) 第437−452页
Huang K 1988 Solid State Physics (Beijing: Higher Education Press) pp437−452 (in Chinese)
[44] Abdellatif S, Ghannam R, Khalil A S G 2014 Appl. Opt. 53 3294Google Scholar
[45] 李丹之 1999 42 2349Google Scholar
Li D Z 1999 Acta Phys. Sin. 42 2349Google Scholar
[46] Ordal M A, Bell R J, Alexander R W, Long L L, Querry M R 1985 Appl. Opt. 24 4493Google Scholar
[47] 刘恩科, 朱秉升, 罗晋生, 亢润民, 屠善洁 1997 半导体物理学 (北京: 国防工业出版社) 第259页
Liu K E, Zhu B S, Luo J S, Kang R M, Tu S J 1997 Semiconductor Physics (Beijing: National Defense Industry Press) p259 (in Chinese)
-
表 1 X@Ga和X@Sb缺陷的形成能
Table 1. Formation energy of X@Ga and X@Sb defects.
Defects Fe@Ga Co@Ga Ni@Ga Fe@Sb Co@Sb Ni@Sb Eformation /eV 3.0352 2.6561 0.1427 4.1055 3.3773 1.0454 表 2 GaSb和X掺杂体系的Mulliken布居分析
Table 2. Mulliken population of GaSb and X-doped systems.
Atomic Charge Bond Population Length GaSb Ga 0.03 Ga—Sb 0.51 2.6297 Sb –0.03 Fe doped Fe 0.45 Fe—Sb 0.83 2.3936 Co doped Co 0.56 Co—Sb 0.80 2.3972 Ni doped Ni 0.58 Ni—Sb 0.78 2.4344 表 3 S1, S2, S3和S4掺杂结构优化后体系的总能量
Table 3. Total energies of relaxed S1, S2, S3 and S4 configurations.
结构 S1 S2 S3 S4 总能量
E/eV–65569.778 –65669.549 –65669.235 –65669.152 -
[1] Qiu K, Hayden A C S 2006 Energy Convers. Manage 47 365Google Scholar
[2] Bitnar, Bernd 2003 Semicond. Sci. Technol. 18 S221Google Scholar
[3] Ferrari C, Melino F, Bosi M 2013 Sol. Energy Mater. Sol. Cells 113 20Google Scholar
[4] Attolini G, Bosi M, Ferrari C, Melino F 2013 Appl. Energy 103 618Google Scholar
[5] 王跃, 刘国军, 李俊承, 安宁, 李占国, 王玉霞, 魏志鹏 2012 中国激光 39 0102010
Wang Y, Liu G J, Li J C, An N, Li Z G, Wang Y X, Wei Z P 2012 Chin. J. Lasers 39 0102010
[6] Klipstein P C, Livneh Y, Glozman A, Grossman S, Klin O, Snapi N, Weiss E 2014 J. Electron. Mater. 43 2984Google Scholar
[7] del Alamo J A 2011 Nature 479 317Google Scholar
[8] Klipstein P C, Livneh Y, Klin O, Grossman S, Snapi N, Glozman A, Weiss E 2013 Infrared Phys. Technol. 59 53Google Scholar
[9] Baril N, Bandara S, Hoeglund L, Henry N, Brown A, Billman C, Maloney P, Nallon E, Tidrow M, Pellegrino J 2015 Infrared Phys. Technol. 70 58Google Scholar
[10] Delmas M, Rossignol R, Rodriguez J B, Christol P 2017 Superlattices Microstruct. 104 402Google Scholar
[11] Henry N C, Brown A, Knorr D B, Baril N, Nallon E, Lenhart J, Tidrow M, Bandara S 2016 Appl. Phys. Lett. 108 011606Google Scholar
[12] Huang Y, Xiong M, Wu Q, Dong X, Zhao Y C, Shi W H, Miao X H, Zhang B S 2017 IEEE J. Quantum Electron. 53 1
[13] Zhang Z K, Pan W W, Liu J L, Lei W 2019 Chin. Phys. B 28 018103Google Scholar
[14] 魏相飞, 何锐, 张刚, 刘向远 2018 67 187301Google Scholar
Wei X F, He R, Zhang G, Liu X Y 2018 Acta Phys. Sin. 67 187301Google Scholar
[15] Vurgaftman I, Meyer J R, Ram-Mohan L R 2001 J. Appl. Phys. 89 5815Google Scholar
[16] Khvostikov V P, Khvostikova O A, Gazaryan P Y, Sorokina S V, Potapovich N S, Malevskaya A V, Kaluzhniy N A, Shvarts M, Andreev V M 2007 J. Energy Eng. 129 291Google Scholar
[17] Vlasov A S, Khvostikov V P, Karlina L B, et al. 2013 Technol. Phys. 58 1034Google Scholar
[18] Wang Y, Chen N F, Zhang X W, Huang T M, Yin Z G, Wang Y S, Zhang H 2010 Sol. Energy Mater. Sol. Cells 94 1704Google Scholar
[19] Kim J M, Dutta P S, Brown E, Borrego J M, Greiff P 2013 Semicond. Sci. Technol. 28 065002Google Scholar
[20] Cederberg J G, Blaich J D, Girard G R, Lee S R, Nelson D P, Murray C S 2008 J. Cryst. Growth 310 3453Google Scholar
[21] Krier A, Yin M, Marshall A R J, Krier S E 2016 J. Electron. Mater. 45 1Google Scholar
[22] Qiu K, Hayden A C S 2014 Energy Convers. Manage. 79 54Google Scholar
[23] Qiu K, Hayden A C S, Mauk M G, Sulima O V 2006 Sol. Energy Mater. Sol. Cells 90 68Google Scholar
[24] Liu Z, Qiu K 2017 Energy 141 892
[25] Peng X, Zhang B, Li G, Zou J, Zhu Z, Cai Z 2011 Infrared Phys. Technol. 54 454Google Scholar
[26] Lou Y Y, Zhang X L, Huang A B, Wang Y 2017 Sol. Energy Mater. Sol. Cells 172 124Google Scholar
[27] Tang L, Fraas L M, Liu Z, Xu C, Chen X 2016 IEEE Trans. Electron Devices 63 3591Google Scholar
[28] Li M Z, Chen X L, Li H L, Zhang X H, Qi Z Y, Wang X X, Fan P, Zhang Q L, Zhu X L, Zhuang X J 2018 Chin. Phys. B 27 078101Google Scholar
[29] Ye H, Tang L, Li K 2013 Semicond. Sci. Technol. 28 015001Google Scholar
[30] 潘凤春, 林雪玲, 陈焕铭 2015 64 224218Google Scholar
Pan F C, Lin X L, Chen H M 2015 Acta Phys. Sin. 64 224218Google Scholar
[31] 张丽丽, 夏桐, 刘桂安, 雷博程, 赵旭才, 王少霞, 黄以能 2019 68 017401Google Scholar
Zhang L L, Xia T, Liu G A, Lei B C, Zhao X C, Wang S X, Huang Y N 2019 Acta Phys. Sin. 68 017401Google Scholar
[32] Perdew J P, Wang Y 1992 Phys. Rev. B 45 13244Google Scholar
[33] Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys. Condens. Matter 14 2717Google Scholar
[34] Pack J D, Monkhorst H J 1977 Phys. Rev. B 16 1748Google Scholar
[35] Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar
[36] 林雪玲, 潘凤春, 孙建军 2018 山东师范大学学报(自然科学版) 33 328Google Scholar
Lin X L, Pan F C, Sun J J 2018 J. Shandong Normal Univ. (Nat. Sci.)
33 328Google Scholar [37] Zota C B, Kim S H, Yokoyama M, Takenaka M, Takagi S 2012 Appl. Phys. Express 5 071201Google Scholar
[38] Yokoyama M, Nishi K, Kim S, Yokoyama H, Takenaka M, Takagi S 2014 Appl. Phys. Lett. 104 093509Google Scholar
[39] Tu N T, Hai P N, Anh L D, Tanaka M 2014 Appl. Phys. Lett. 105 132402Google Scholar
[40] Tu N T, Hai P N, Anh L D, Tanaka M 2016 Appl. Phys. Lett. 108 192401Google Scholar
[41] Lin X L, Pan F C 2019 Mater. Res. Express 6 015901
[42] Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar
[43] 黄昆 1988 固体物理学 (北京: 高等教育出版社) 第437−452页
Huang K 1988 Solid State Physics (Beijing: Higher Education Press) pp437−452 (in Chinese)
[44] Abdellatif S, Ghannam R, Khalil A S G 2014 Appl. Opt. 53 3294Google Scholar
[45] 李丹之 1999 42 2349Google Scholar
Li D Z 1999 Acta Phys. Sin. 42 2349Google Scholar
[46] Ordal M A, Bell R J, Alexander R W, Long L L, Querry M R 1985 Appl. Opt. 24 4493Google Scholar
[47] 刘恩科, 朱秉升, 罗晋生, 亢润民, 屠善洁 1997 半导体物理学 (北京: 国防工业出版社) 第259页
Liu K E, Zhu B S, Luo J S, Kang R M, Tu S J 1997 Semiconductor Physics (Beijing: National Defense Industry Press) p259 (in Chinese)
Catalog
Metrics
- Abstract views: 9608
- PDF Downloads: 175
- Cited By: 0