Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Lamb wave imaging method based on difference signal in reverse path

Jiao Jing-Pin Li Hai-Ping He Cun-Fu Wu Bin Xue Yan

Citation:

Lamb wave imaging method based on difference signal in reverse path

Jiao Jing-Pin, Li Hai-Ping, He Cun-Fu, Wu Bin, Xue Yan
PDF
HTML
Get Citation
  • The traditional Lamb wave structure health monitoring imaging method based on reference signal is affected by environmental factors such as temperature change. To solve this problem, considering the difference in the scattered fields generated by the interaction between ultrasonic waves and defects in the reverse path, a Lamb wave imaging method is proposed in this paper based on the difference signal of sparse array in inverse path. Numerical simulations are carried out to determine the generation conditions of difference signal in inversion path, and the influences of the angles and distances between the defect and the two sensors on the amplitude of difference signal in inversion path. It is found that the difference signal in reverse path is much more obvious when the defect appears as asymmetric distribution towards the excitation sensor and receiving sensors; the amplitude of difference signal in inverse path is affected by distance difference of the Lamb wave propagating in reverse path and the scattering coefficient of the defect. On this basis, the effectiveness of the Lamb wave imaging method based on the difference signal in inverse path is studied numerically and experimentally. The results show that the Lamb wave imaging method based on the difference signal in inversion path can perfectly eliminate the interference between direct wave and the boundary reflection wave, and the imaging method can detect the defect at different positions in the plate. Moreover, the imaging resolution is higher and the defect location is accurate. The research work provides a new feasible scheme for the extensive health monitoring of plate structure.
      Corresponding author: Jiao Jing-Pin, jiaojp@bjut.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2016YFC0802102) and the National Natural Science Foundation of China (Grant No. 11572010).
    [1]

    Abbas M, Shafiee M 2018 Sensors 18 3958Google Scholar

    [2]

    高广健, 邓明晰, 李明亮, 刘畅 2015 64 224301Google Scholar

    Gao G J, Deng M X, Li M L, Liu C 2015 Acta Phys. Sin. 64 224301Google Scholar

    [3]

    Kudela P, Radzienski M, Ostachowicz W, Yang Z 2018 Mech. Syst. Signal Proc. 108 21Google Scholar

    [4]

    Chen S J, Zhou S P, Li Y, Xiang Y X, Qi M X 2017 Chin. Phys. Lett. 34 044301Google Scholar

    [5]

    Petrone G 2018 Aerosp. Sci. Technol. 82 304

    [6]

    Munian R K, Mahapatra D R, Gopalakrishnan S 2018 Compos. Struct. 206 484Google Scholar

    [7]

    Mohammadi M, Pouyan A A, Khan N A, Abolghasemi V 2018 Signal Process. 150 85Google Scholar

    [8]

    Kim C Y, Park K J 2015 NDT&E Int. 74 15

    [9]

    Wilcox P D, Lowe M, Cawley P 2003 IEEE Trans. Ultrason. Ferroelectr. 50 419Google Scholar

    [10]

    Xu K, Ta D, Moilanen P, Wang W Q 2012 J. Acoust. Soc. Am. 131 2714Google Scholar

    [11]

    Agrahari J K, Kapuria S 2018 Struct. Control HLTH. 25 e2064Google Scholar

    [12]

    Salmanpour M S, Sharif K Z, Mhf A 2017 Sensors 17 1178Google Scholar

    [13]

    Muller A, Robertson-Welsh B, Gaydecki P, Gresil M, Soutis C 2017 Appl. Compos. Mater. 24 553Google Scholar

    [14]

    Zhao X L, Gao H D, Zhang G F, Ayhan B, Yan F, Kwan C, Rose J L 2007 Smart Mater. Struct. 16 1208Google Scholar

    [15]

    Chen F, Wilcox P D 2007 Ultrasonics 47 111Google Scholar

    [16]

    Douglass A C S, Harley J B 2018 IEEE Trans. Ultrason. Ferroelectr. 65 851Google Scholar

    [17]

    Lu Y, Michaels J E 2009 IEEE Sens. J. 9 1462Google Scholar

    [18]

    Sohn H 2007 Philos. Trans. R. Soc. A:-Math. Phys. 365 539Google Scholar

    [19]

    Clarke T, Cawley P, Wilcox P, Croxford A 2009 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56 2666Google Scholar

    [20]

    Konstantinidis G, Wilcox P D, Drinkwater B W 2007 IEEE Sens. J. 7 905Google Scholar

    [21]

    Park H W, Sohn H, Law K H, Farrar C R 2007 J. Sound Vibr. 302 50Google Scholar

    [22]

    Jan H, Morteza T, Steven D, van Koen D A 2016 Material 9 901Google Scholar

    [23]

    Tabatabaeipour M, Hettler J, Delrue S, van Den Abeele K 2016 NDT&E Int. 80 23

    [24]

    Ciampa F, Pickering S G, Scarselli G, Meo M 2017 Struct. Control HLTH. 24 e1911Google Scholar

    [25]

    Demetgul M, Senyurek V Y, Uyandik R, Tansel I N, Yazicioglu O 2015 Measurement 69 42Google Scholar

    [26]

    Nguyen L T, Kocur G K, Saenger E H 2018 Ultrasonics 90 153Google Scholar

    [27]

    Hongye L, Xin C, Michaels J E, Michaels T E, Cunfu H 2019 Ultrasonics 91 220Google Scholar

    [28]

    Zhang J, Drinkwater B W, Wilcox P D 2008 IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 55 2254Google Scholar

    [29]

    郑阳, 何存富, 周进节, 张也弛 2013 工程力学 30 236

    Zheng Y, He C F, Zhou J J, Zhang Y C 2013 Eng. Mech. 30 236

    [30]

    Harley J B, Moura J M 2013 J. Acoust. Soc. Am. 133 2732Google Scholar

    [31]

    Harley J B, José M F 2014 J. Acoust. Soc. Am. 135 1231Google Scholar

    [32]

    Soleimanpour R, Ng C T 2016 J. Civil Struct. Health Monit. 6 447Google Scholar

  • 图 1  无限大薄板中兰姆波传播模型示意图

    Figure 1.  Schematic diagram of Lamb wave propagation model in an infinite plate.

    图 2  接收信号模态分析数值仿真模型

    Figure 2.  Numerical simulation model of modal analysis of received signals.

    图 3  不同位置接收到的z方向的去参考信号

    Figure 3.  Dereference signals in the z direction received at different positions.

    图 4  不同位置接收到x方向的去参考信号

    Figure 4.  Dereference signal in the x direction received at different positions.

    图 5  z方向去参考信号的2D-FFT

    Figure 5.  2D-FFT of the reference signal in the z direction.

    图 6  x方向去参考信号的2D-FFT

    Figure 6.  2D-FFT of the reference signal in the x direction.

    图 7  影响因素分析数值仿真模型 (a) 双因素综合影响模型; (b) 距离差影响因素模型

    Figure 7.  Numerical simulation model of influencing factor analysis: (a) A model of two-factor comprehensive impact; (b) model of distance difference influencing factor.

    图 8  l = 0时接收信号及反转路径差信号

    Figure 8.  Received signal and reverse path delta signal when l = 0.

    图 9  l ≠ 0时接收信号及反转路径差信号

    Figure 9.  Received signal and reverse path delta signal when l ≠ 0.

    图 10  不同传播距离差下的差信号最大幅值

    Figure 10.  Maximum amplitude of the delta signals under different propagation distance differences.

    图 11  不同传播距离差下的$\Delta A$计算结果

    Figure 11.  Calculation results of $\Delta A$ under different propagation distance differences.

    图 12  不同缺陷位置下的差信号幅值

    Figure 12.  Amplitude of delta signals at different defect locations.

    图 13  圆形通孔缺陷的散射系数

    Figure 13.  Scattering coefficient of the circular through hole defect

    图 14  不同缺陷位置下的散射系数

    Figure 14.  Scattering coefficients at different defect locations.

    图 15  不同缺陷位置下的$\Delta A$

    Figure 15.  Values of $\Delta A$ at different defect locations.

    图 16  板结构稀疏阵列兰姆波检测仿真模型

    Figure 16.  Simulation model of lamb waves detection for sparse array of plate structure.

    图 17  圆形通孔缺陷成像结果 (a) 序号1 (基于参考信号); (b) 序号2; (c) 序号3; (d) 序号4

    Figure 17.  Imaging results of circular through hole defects: (a) Number 1 (based on reference signal); (b) number 2; (c) number 3; (d) number 4.

    图 18  矩形缺陷成像结果 (a) 序号; (b) 序号2

    Figure 18.  Imaging results of rectangular defect: (a) Number 1; (b) number 2.

    图 19  典型传感器对的反转路径差信号及其对成像的贡献 (a) 1号和3号传感器对的反转路径差信号; (b) 1号和3号传感器对的反转路径差信号对成像的贡献; (c) 2号和4号传感器对的反转路径差信号; (d) 2号和4号传感器对的反转路径差信号对成像的贡献

    Figure 19.  Inverted path delta signal of a typical sensor pairs and its contribution to imaging: (a) Inverted path delta signal of sensor pairs of number1 and number 3; (b) contribution to imaging of inverted path delta signal of sensor pairs of number1 and number 3; (c) inverted path delta signal of sensor pairs of number 2 and number 4; (d)contribution to imaging of inverted path delta signal of sensor pairs of number 2 and number 4.

    图 20  基于反转路径差信号的成像结果

    Figure 20.  Imaging results based on the inverted path delta signal.

    图 21  实验系统示意图

    Figure 21.  Schematic diagram of the experimental system.

    图 23  实验成像结果 (a) 4个传感器; (b) 6个传感器

    Figure 23.  Imaging results of the experiment: (a) Four sensors; (b) six sensors.

    图 22  2号和4号传感器对的接收信号及差信号

    Figure 22.  Receiving signals and delta signal for sensor pairs 2 and 4.

    表 1  不同位置缺陷的坐标(单位mm)以及相应的夹角α (单位(°))

    Table 1.  Coordinates (unit: mm) of defects at different locations and corresponding angles α (unit: (°))

    hl
    010 20304050607080 90
    60118.1117.7116.6114.62111.8108.0103.197.190.081.93
    72102.7102.3101.399.697.193.990.085.3580.174.3
    80108.5108.1107.0105.2102.699.194.889.683.777.2
    10090.089.788.887.485.482.879.876.272.268.0
    DownLoad: CSV

    表 2  圆形缺陷检测时仿真参数及定位结果(单位: mm)

    Table 2.  Simulation parameters and positioning results for circular defect detection (unit: mm).

    序号传感器1传感器2传感器3传感器4缺陷P位置定位结果定位误差
    1 (基于参考信号)(150, 350)(350, 350)(150, 150)(350, 150)(280, 280)(284, 281)4.1
    2(150, 350)(350, 350)(150, 150)(350, 150)(280, 280)(285, 285)7.1
    3(150, 340)(350, 340)(150, 150)(350, 150)(240, 280)(239, 282)2.2
    4(170, 350)(350, 335)(140, 150)(345, 160)(240, 280)(239, 281)1.4
    DownLoad: CSV

    表 3  矩形缺陷检测时仿真参数及定位结果(单位: mm)

    Table 3.  Simulation parameters and positioning results for rectangular defect detection (unit: mm).

    序号传感器1传感器2传感器3传感器4缺陷P位置定位结果定位误差
    1(150, 340)(350, 340)(150, 150)(350, 150)(240, 280)(239, 279)1.4
    2(170, 350)(350, 335)(140, 150)(345, 160)(240, 280)(241, 279)1.4
    DownLoad: CSV

    表 4  考虑边界影响时仿真参数及定位结果(单位: mm)

    Table 4.  Simulation parameters and positioning results when considering boundary effects (unit: mm).

    序号传感器1传感器2传感器3传感器4缺陷位置定位结果定位误差
    1(140, 370)(380, 3355)(130, 140)(360, 150)(240, 280)(240, 284)4
    DownLoad: CSV
    Baidu
  • [1]

    Abbas M, Shafiee M 2018 Sensors 18 3958Google Scholar

    [2]

    高广健, 邓明晰, 李明亮, 刘畅 2015 64 224301Google Scholar

    Gao G J, Deng M X, Li M L, Liu C 2015 Acta Phys. Sin. 64 224301Google Scholar

    [3]

    Kudela P, Radzienski M, Ostachowicz W, Yang Z 2018 Mech. Syst. Signal Proc. 108 21Google Scholar

    [4]

    Chen S J, Zhou S P, Li Y, Xiang Y X, Qi M X 2017 Chin. Phys. Lett. 34 044301Google Scholar

    [5]

    Petrone G 2018 Aerosp. Sci. Technol. 82 304

    [6]

    Munian R K, Mahapatra D R, Gopalakrishnan S 2018 Compos. Struct. 206 484Google Scholar

    [7]

    Mohammadi M, Pouyan A A, Khan N A, Abolghasemi V 2018 Signal Process. 150 85Google Scholar

    [8]

    Kim C Y, Park K J 2015 NDT&E Int. 74 15

    [9]

    Wilcox P D, Lowe M, Cawley P 2003 IEEE Trans. Ultrason. Ferroelectr. 50 419Google Scholar

    [10]

    Xu K, Ta D, Moilanen P, Wang W Q 2012 J. Acoust. Soc. Am. 131 2714Google Scholar

    [11]

    Agrahari J K, Kapuria S 2018 Struct. Control HLTH. 25 e2064Google Scholar

    [12]

    Salmanpour M S, Sharif K Z, Mhf A 2017 Sensors 17 1178Google Scholar

    [13]

    Muller A, Robertson-Welsh B, Gaydecki P, Gresil M, Soutis C 2017 Appl. Compos. Mater. 24 553Google Scholar

    [14]

    Zhao X L, Gao H D, Zhang G F, Ayhan B, Yan F, Kwan C, Rose J L 2007 Smart Mater. Struct. 16 1208Google Scholar

    [15]

    Chen F, Wilcox P D 2007 Ultrasonics 47 111Google Scholar

    [16]

    Douglass A C S, Harley J B 2018 IEEE Trans. Ultrason. Ferroelectr. 65 851Google Scholar

    [17]

    Lu Y, Michaels J E 2009 IEEE Sens. J. 9 1462Google Scholar

    [18]

    Sohn H 2007 Philos. Trans. R. Soc. A:-Math. Phys. 365 539Google Scholar

    [19]

    Clarke T, Cawley P, Wilcox P, Croxford A 2009 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56 2666Google Scholar

    [20]

    Konstantinidis G, Wilcox P D, Drinkwater B W 2007 IEEE Sens. J. 7 905Google Scholar

    [21]

    Park H W, Sohn H, Law K H, Farrar C R 2007 J. Sound Vibr. 302 50Google Scholar

    [22]

    Jan H, Morteza T, Steven D, van Koen D A 2016 Material 9 901Google Scholar

    [23]

    Tabatabaeipour M, Hettler J, Delrue S, van Den Abeele K 2016 NDT&E Int. 80 23

    [24]

    Ciampa F, Pickering S G, Scarselli G, Meo M 2017 Struct. Control HLTH. 24 e1911Google Scholar

    [25]

    Demetgul M, Senyurek V Y, Uyandik R, Tansel I N, Yazicioglu O 2015 Measurement 69 42Google Scholar

    [26]

    Nguyen L T, Kocur G K, Saenger E H 2018 Ultrasonics 90 153Google Scholar

    [27]

    Hongye L, Xin C, Michaels J E, Michaels T E, Cunfu H 2019 Ultrasonics 91 220Google Scholar

    [28]

    Zhang J, Drinkwater B W, Wilcox P D 2008 IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 55 2254Google Scholar

    [29]

    郑阳, 何存富, 周进节, 张也弛 2013 工程力学 30 236

    Zheng Y, He C F, Zhou J J, Zhang Y C 2013 Eng. Mech. 30 236

    [30]

    Harley J B, Moura J M 2013 J. Acoust. Soc. Am. 133 2732Google Scholar

    [31]

    Harley J B, José M F 2014 J. Acoust. Soc. Am. 135 1231Google Scholar

    [32]

    Soleimanpour R, Ng C T 2016 J. Civil Struct. Health Monit. 6 447Google Scholar

  • [1] Ji Chen. Nuclear structure effects to atomic Lamb shift and hyperfine splitting. Acta Physica Sinica, 2024, 73(20): 202101. doi: 10.7498/aps.73.20241063
    [2] Li Yong-Fei, Guo Rui-Ming, Zhao Hang-Fang. Sparse reconstruction of acoustic interference fringes in shallow water and internal wave environment. Acta Physica Sinica, 2023, 72(7): 074301. doi: 10.7498/aps.72.20221932
    [3] Xie Qian-Peng, Pan Xiao-Yi, Chen Ji-Yuan, Xiao Shun-Ping. Efficient angle and polarization parameter estimaiton for electromagnetic vector sensors multiple-input multiple-output radar by using sparse array. Acta Physica Sinica, 2020, 69(7): 074302. doi: 10.7498/aps.69.20191895
    [4] Cui An-Jing, Li Dao-Jing, Zhou Kai, Wang Yv, Hong Jun. On method of composing low frequency signals based on array structures. Acta Physica Sinica, 2020, 69(19): 194101. doi: 10.7498/aps.69.20200501
    [5] Zhang Tao, Hou Hong, Bao Ming. Imaging through coda wave interferometryvia sparse reconstruction. Acta Physica Sinica, 2019, 68(19): 199101. doi: 10.7498/aps.68.20190831
    [6] Hao Wei-Qian, Liang Zhong-Cheng, Liu Xiao-Yao, Zhao Rui, Kong Mei-Mei, Guan Jian-Fei, Zhang Yue. Imaging performance of fractal structuresparse aperture arrays. Acta Physica Sinica, 2019, 68(19): 199501. doi: 10.7498/aps.68.20190818
    [7] Ni Long, Chen Xiao. Mode separation for multimode Lamb waves based on dispersion compensation and fractional differential. Acta Physica Sinica, 2018, 67(20): 204301. doi: 10.7498/aps.67.20180561
    [8] Zhang Hai-Yan, Xu Meng-Yun, Zhang Hui, Zhu Wen-Fa, Chai Xiao-Dong. Full focal imaging of ultrasonic Lamb waves using diffuse field information. Acta Physica Sinica, 2018, 67(22): 224301. doi: 10.7498/aps.67.20181268
    [9] Feng Hui, Sun Biao, Ma Shu-Gen. One-bit compressed sensing reconstruction for block sparse signals. Acta Physica Sinica, 2017, 66(18): 180202. doi: 10.7498/aps.66.180202
    [10] Hou Xing-Min, Zhang Cheng, Qiu Jin-Tao, Gu Jian-Wei, Wang Rui-Xue, Shao Tao. Properties of temporal X-ray in nanosecond-pulse discharges with a tube-to-plane gap at atmospheric pressure. Acta Physica Sinica, 2017, 66(10): 105204. doi: 10.7498/aps.66.105204
    [11] Zhang Hai-Yan, Yang Jie, Fan Guo-Peng, Zhu Wen-Fa, Chai Xiao-Dong. Reverse time migration Lamb wave imaging based on mode separation. Acta Physica Sinica, 2017, 66(21): 214301. doi: 10.7498/aps.66.214301
    [12] Chen Dian-Bing, Zhu Ming, Gao Wen, Wang Hui-Li, Yang Hang. Visual tracking based on the estimation of representation residual matrix. Acta Physica Sinica, 2016, 65(19): 194201. doi: 10.7498/aps.65.194201
    [13] Chen Qiu-Ju, Jiang Qiu-Xi, Zeng Fang-Ling, Song Chang-Bao. Single frequency spatial power combining using sparse array based on time reversal of electromagnetic wave. Acta Physica Sinica, 2015, 64(20): 204101. doi: 10.7498/aps.64.204101
    [14] Chen Xiao, Wang Chen-Long. Noise suppression for Lamb wave signals by Tsallis mode and fractional-order differential. Acta Physica Sinica, 2014, 63(18): 184301. doi: 10.7498/aps.63.184301
    [15] Ding Hong-Xing, Shen Zhong-Hua, Li Jia, Zhu Xue-Feng, Ni Xiao-Wu. Large partial band-gaps for Lamb waves in multiple phononic crystals thin plates. Acta Physica Sinica, 2012, 61(19): 196301. doi: 10.7498/aps.61.196301
    [16] Zhang Hai-Yan, Cao Ya-Ping, Yu Jian-Bo, Chen Xian-Hua. Actuating frequency selection of single mode Lamb waves using single piezoelectric transducer. Acta Physica Sinica, 2011, 60(11): 114301. doi: 10.7498/aps.60.114301
    [17] Zhang Hai-Yan, Sun Xiu-Li, Cao Ya-Ping, Chen Xian-Hua, Yu Jian-Bo. Structural damage imaging based on time-reversal theory for focusing of Lamb waves. Acta Physica Sinica, 2010, 59(10): 7111-7119. doi: 10.7498/aps.59.7111
    [18] Lü Xiao-Gui, Ren Chun-Sheng, Ma Teng-Cai, Zhu Hai-Long, Qian Mu-Yang, Wang De-Zhen. Influence of quartz tube on the nanosecond pulsed discharge in a cone-to-plane air gap. Acta Physica Sinica, 2010, 59(11): 7917-7921. doi: 10.7498/aps.59.7917
    [19] Wei Wei, Hao Yue, Feng Qian, Zhang Jin-Cheng, Zhang Jin-Feng. Geometrical optimization of AlGaN/GaN field-plate high electron mobility transistor. Acta Physica Sinica, 2008, 57(4): 2456-2461. doi: 10.7498/aps.57.2456
    [20] Wei Wei, Lin Ruo-Bing, Feng Qian, Hao Yue. Current collapse mechanism of field-plated AlGaN/GaN HEMTs. Acta Physica Sinica, 2008, 57(1): 467-471. doi: 10.7498/aps.57.467
Metrics
  • Abstract views:  8007
  • PDF Downloads:  56
  • Cited By: 0
Publishing process
  • Received Date:  19 January 2019
  • Accepted Date:  11 April 2019
  • Available Online:  01 June 2019
  • Published Online:  20 June 2019

/

返回文章
返回
Baidu
map