-
The conjugated polymer polyflourene has been well studied for its strong blue light emission ability and high quantum efficiency behavior. It has wide applications for light emitting diodes, sensors as well as photo-detectors. Therein the
$ \beta $ conformation of PFO crystals is more attractive due to its longer conjugation length, higher carrier mobility and better luminous efficiency. Therefore it is great essential to control the formation and stability of$ \beta $ conformation of PFO crystals to develop new kind of photo-electronic devices. As is known, polymeric materials confined in a nanometer-sized space often exhibit unique properties compared with their bulk state, such as abnormal chain mobility, molecular assembly and phase transition behavior. These factors are of great significance to develop new kind of material and applications. Generally the confined condition includes quantum dot (zero-dimensional, 0D), nanowire or nanotube (1D), ultrathin film (2D) and nanoparticle (3D). In this paper, we design a unique 1D nanoconfined environment based on vertically aligned carbon nanotube (CNT) array structure. An ultra-high CNT density is achieved through a solvent-induced contraction process. The adjacent narrow carbon nanotube gap thus forms a quasi-1 confined nano-space with the tunable size ranging from 5 to 50 nm. Then we infiltrate the conjugated polymer poly(9,9-dioctylfluorene-2,7-diyl) (PFO) into those nano-gaps of carbon nanotube arrays through a solvent evaporation method to obtain the PFO infilled CNT array composite film. It is found that the chain mobility of PFO molecules in such a 1D nano-confined space of carbon nanotubes is significantly suppressed compared with the scenario of the spin-coated PFO film. The transition speed between different crystal forms of PFO declines greatly, which meanwhile improves the thermal stability of the$ \beta $ conformation of PFO crystal. Additionally, the aligned carbon nanotubes have great effects on the orientation and distribution of PFO chains. The PFO crystals are confirmed to grow preferentially along the longitudinal direction of CNT array, which is potential to grow PFO crystals with high quality and excellent performance. Thus, such a PFO/CNT array composite film can have great potential to prepare PFO photovoltaic devices with excellent luminescent properties and high stability in the future.-
Keywords:
- carbon nanotube arrays /
- polymer poly(9,9-dioctylfluorene-2,7-diyl) /
- confined space /
- chain mobility
[1] Cook J H, Santos J, Li H, Al-Attar H A, Bryce M R, Monkman A P 2014 J. Mater. Chem. C 2 5587
Google Scholar
[2] Schelkle K M, Bender M, Jeltsch K, Buckup T, Mullen K, Hamburger M, Bunz U H 2015 Angew. Chem. Int. Ed. 54 14545
Google Scholar
[3] Luo J, Zhou Y, Niu Z Q, Zhou Q F, Ma Y G, Pei J 2007 J. Am. Chem. Soc. 129 11314
Google Scholar
[4] Zhong C, Duan C, Huang F, Wu H, Cao Y 2011 Chem. Mater. 23 326
Google Scholar
[5] Cingil H E, Storm I M, Yorulmaz Y, Te B D W, De V R, Cohen S M A, Sprakel J 2015 J. Am. Chem. Soc. 137 9800
Google Scholar
[6] Lv F T, Qiu T, Liu L B, Ying J M, Wang S 2016 Small 12 696
Google Scholar
[7] Inganas O, Zhang F, Andersson M R 2009 Acc. Chem. Res. 42 1731
Google Scholar
[8] Wu H, Ying L, Yang W, Cao Y 2009 Chem. Soc. Rev. 38 3391
Google Scholar
[9] Scherf U, List E J W 2002 Adv. Mater. 14 477
Google Scholar
[10] Chen S H, Su A C, Su C H, Chen S A 2005 Macromolecules 38 379
Google Scholar
[11] Chen S H, Chou H L, Su A C, Chen S A 2004 Macromolecules 37 6833
Google Scholar
[12] Grell M, Bradley D D C, Ungar G, Hill J, Whitehead K S 1999 Macromolecules 32 5810
Google Scholar
[13] Lee C C, Lai S Y, Su W B, Chen H L, Chung C L, Chen J H 2013 J. Phys. Chem. C 117 20387
Google Scholar
[14] Chunwaschirasiri W, Tanto B, Huber D L, Winokur M J 2005 Phys. Rev. Lett. 94 107402
Google Scholar
[15] Arif M, Volz C, Guha S 2006 Phys. Rev. Lett. 96 025503
Google Scholar
[16] Cadby A J 2000 Phys. Rev. B 62 15604
Google Scholar
[17] Lu H H, Liu C Y, Chang C H, Chen S A 2007 Adv. Mater. 19 2574
Google Scholar
[18] Peet J, Brocker E, Xu Y, Bazan G C 2008 Adv. Mater. 20 1882
Google Scholar
[19] Asada K, Kobayasi T, Naito H 2006 Japanese Journal of Applied Physics Part 2-Letters and Express Letters 45 L247
Google Scholar
[20] Zhang Q, Chi L, Hai G, Fang Y, Li X, Xia R, Huang W, Gu E 2017 Molecules 22 315
Google Scholar
[21] Huang L, Huang X, Sun G, Gu C, Lu D, Ma Y 2012 J. Phys. Chem. C 116 7993
Google Scholar
[22] Li T, Liu B, Zhang H, Ren J, Bai Z, Li X, Ma T, Lu D 2016 Polymer 103 299
Google Scholar
[23] Li T, Huang L, Bai Z, Li X, Liu B, Lu D 2016 Polymer 88 71
Google Scholar
[24] O'Carroll D, Lieberwirth I, Redmond G 2007 Nat. Nanotechnol. 2 180
Google Scholar
[25] Grimm S, Martín J, Rodriguez G, Fernández-Gutierrez M, Mathwig K, Wehrspohn R B, Gösele U, San Roman J, Mijangos C, Steinhart M 2010 J. Mater. Chem. 20 3171
Google Scholar
[26] Liu C L, Chen H L 2018 Soft Matter 14 5461
Google Scholar
[27] Li M, Wu H, Huang Y, Su Z 2012 Macromolecules 45 5196
Google Scholar
[28] Shin K, Woo E, Jeong Y G, Kim C, Huh J, Kim K W 2007 Macromolecules 40 6617
Google Scholar
[29] Garcia G M C, Linares A, Hernandez J J, Rueda D R, Ezquerra T A, Poza P, Davies R J 2010 Nano Lett. 10 1472
Google Scholar
[30] Steinhart M, Goring P, Dernaika H, Prabhukaran M, Gosele U, Hempel E, Thurn A T 2006 Phys. Rev. Lett. 97 027801
Google Scholar
[31] Hui W, Wei W, Huixian Yang A, Su Z 2007 Macromolecules 40 4244
Google Scholar
[32] Wu H, Wang W, Huang Y, Su Z 2009 Macromol Rapid Commun. 30 194
Google Scholar
[33] Wu Y, Gu Q, Ding G, Tong F, Hu Z, Jonas A M 2013 ACS Macro Lett. 2 535
Google Scholar
[34] Ding G, Wu Y, Weng Y, Zhang W, Hu Z 2013 Macromolecules 46 8638
Google Scholar
[35] O'Brien G A, Quinn A J, Tanner D A, Redmond G 2006 Adv. Mater. 18 2379
Google Scholar
[36] O'Carroll D, Iacopino D, O'Riordan A, Lovera P, O'Connor É, O'Brien G A, Redmond G 2008 Adv. Mater. 20 42
Google Scholar
[37] Steinhart M, Wendorff J H, Greiner A, Wehrspohn R B, Nielsch K, Schilling J, Choi J, Gösele U 2002 Science 296 1997
Google Scholar
[38] Ding G, Li C, Li X, Wu Y, Liu J, Li Y, Hu Z, Li Y 2015 Nanoscale 7 11024
Google Scholar
[39] Wei S, Zhang Y, Liu J, Li X, Wu Y, Wei H, Weng Y, Gao X, Li Y, Wang S D, Hu Z 2015 Adv. Mater. Interfaces 2 1500153
Google Scholar
[40] Zhang P, Huang H, He T, Hu Z 2012 ACS Macro Lett. 1 1007
Google Scholar
[41] Li X H, Shen X Z, Gao X, Weng Y Y 2017 RSC Adv. 7 55885
Google Scholar
[42] Ajayan P M, Lijima S 1993 Nature 361 333
Google Scholar
[43] Ugarte D, Stöckli T, Bonard J M, Châtelain A, Heer W A D 1998 Appl. Phys. A 67 101
[44] Nakamura A, Koyama T, Miyata Y, Shinohara H 2016 J. Phys. Chem. C 120 4647
Google Scholar
[45] Liu Z, Liao G, Li S, Pan Y, Wang X, Weng Y, Zhang X, Yang Z 2013 J. Mater. Chem. A 1 13321
Google Scholar
[46] Bai Z, Liu Y, Li T, Li X, Liu B, Liu B, Lu D 2016 J. Phys. Chem. C 120 27820
Google Scholar
[47] Futaba D N, Hata K, Yamada T, Hiraoka T, Hayamizu Y, Kakudate Y, Tanaike O, Hatori H, Yumura M, Iijima S 2006 Nat. Mater. 5 987
Google Scholar
[48] Zhou S, Sheng J, Yang Z, Zhang X 2018 J. Mater. Chem. A 6 8763
Google Scholar
[49] Li X, Bai Z, Liu B, Li T, Lu D 2017 J. Phys. Chem. C 121 14443
Google Scholar
[50] Jen T H, Wang K K , Chen S A 2012 Polymer 53 5850
Google Scholar
[51] Chen S H, Su A C, Chen S A 2005 J. Phys. Chem. B 109 10067
Google Scholar
[52] Torkkeli M, Galbrecht F, Scherf U, Knaapila M 2015 Macromolecules 48 5244
Google Scholar
[53] Sheng J, Zhou S, Yang Z, Zhang X 2018 Langmuir 34 3678
Google Scholar
[54] Wang M, Li L, Zhou S, Tang R, Yang Z, Zhang X 2018 Langmuir 34 10702
Google Scholar
-
图 1 PFO的化学结构式及三种不同的构象结构及其特征内扭角的示意图 (a) R=(CH2)7CH3; (b)
$\alpha$ 构象; (c)$\gamma $ 构象; (d)$\beta $ 构象Figure 1. Chemical structure of PFO and Schematic illustration of three distinct conformational structures and their characteristic intrachain torsional angles: (a) R=(CH2)7CH3; (b)
$\alpha$ -phase; (c)$\gamma $ -phase; (d)$\beta $ -phase.图 2 (a) PFO/S-ACNTs样品制备流程图; (b) ACNTs阵列收缩前后的对照图; (c) ACNTs的SEM和TEM图 (插图); (d), (e), (f) 相同放大倍数ACNTs、S-ACNTs和PFO/S-ACNTs的SEM图
Figure 2. (a) Schematic preparation of PFO/S-ACNTs; (b) photographs of ACNTs before and after the densification; (c) SEM and TEM (insets) images of as-grown ACNTs; (d), (e), (f) SEM cross-section images of ACNTs、S-ACNTs and PFO/S-ACNTs in the same magnification.
图 3 (a) PFO薄膜的吸收光谱 (蓝色) 与荧光光谱 (红色); (b), (c), (d) 分别对应PFO薄膜、PFO/S-ACNTs和PFO&RCNTs薄膜随退火温度变化的荧光光谱图 (激发波长为380 nm); (e) 三种PFO样品0—0发射峰峰位随退火温度的变化
Figure 3. (a) UV-vis absorption spectra (blue) and PL spectra (red) of PFO film; PL spectra of PFO film, PFO/S-ACNTs and PFO&RCNTs film with different annealing conditions corresponding to (b), (c) and (d), respectively (the excitation wavelength is 380 nm); (e) annealing temperature dependence of the 0—0 emission peak of three PFO based samples.
-
[1] Cook J H, Santos J, Li H, Al-Attar H A, Bryce M R, Monkman A P 2014 J. Mater. Chem. C 2 5587
Google Scholar
[2] Schelkle K M, Bender M, Jeltsch K, Buckup T, Mullen K, Hamburger M, Bunz U H 2015 Angew. Chem. Int. Ed. 54 14545
Google Scholar
[3] Luo J, Zhou Y, Niu Z Q, Zhou Q F, Ma Y G, Pei J 2007 J. Am. Chem. Soc. 129 11314
Google Scholar
[4] Zhong C, Duan C, Huang F, Wu H, Cao Y 2011 Chem. Mater. 23 326
Google Scholar
[5] Cingil H E, Storm I M, Yorulmaz Y, Te B D W, De V R, Cohen S M A, Sprakel J 2015 J. Am. Chem. Soc. 137 9800
Google Scholar
[6] Lv F T, Qiu T, Liu L B, Ying J M, Wang S 2016 Small 12 696
Google Scholar
[7] Inganas O, Zhang F, Andersson M R 2009 Acc. Chem. Res. 42 1731
Google Scholar
[8] Wu H, Ying L, Yang W, Cao Y 2009 Chem. Soc. Rev. 38 3391
Google Scholar
[9] Scherf U, List E J W 2002 Adv. Mater. 14 477
Google Scholar
[10] Chen S H, Su A C, Su C H, Chen S A 2005 Macromolecules 38 379
Google Scholar
[11] Chen S H, Chou H L, Su A C, Chen S A 2004 Macromolecules 37 6833
Google Scholar
[12] Grell M, Bradley D D C, Ungar G, Hill J, Whitehead K S 1999 Macromolecules 32 5810
Google Scholar
[13] Lee C C, Lai S Y, Su W B, Chen H L, Chung C L, Chen J H 2013 J. Phys. Chem. C 117 20387
Google Scholar
[14] Chunwaschirasiri W, Tanto B, Huber D L, Winokur M J 2005 Phys. Rev. Lett. 94 107402
Google Scholar
[15] Arif M, Volz C, Guha S 2006 Phys. Rev. Lett. 96 025503
Google Scholar
[16] Cadby A J 2000 Phys. Rev. B 62 15604
Google Scholar
[17] Lu H H, Liu C Y, Chang C H, Chen S A 2007 Adv. Mater. 19 2574
Google Scholar
[18] Peet J, Brocker E, Xu Y, Bazan G C 2008 Adv. Mater. 20 1882
Google Scholar
[19] Asada K, Kobayasi T, Naito H 2006 Japanese Journal of Applied Physics Part 2-Letters and Express Letters 45 L247
Google Scholar
[20] Zhang Q, Chi L, Hai G, Fang Y, Li X, Xia R, Huang W, Gu E 2017 Molecules 22 315
Google Scholar
[21] Huang L, Huang X, Sun G, Gu C, Lu D, Ma Y 2012 J. Phys. Chem. C 116 7993
Google Scholar
[22] Li T, Liu B, Zhang H, Ren J, Bai Z, Li X, Ma T, Lu D 2016 Polymer 103 299
Google Scholar
[23] Li T, Huang L, Bai Z, Li X, Liu B, Lu D 2016 Polymer 88 71
Google Scholar
[24] O'Carroll D, Lieberwirth I, Redmond G 2007 Nat. Nanotechnol. 2 180
Google Scholar
[25] Grimm S, Martín J, Rodriguez G, Fernández-Gutierrez M, Mathwig K, Wehrspohn R B, Gösele U, San Roman J, Mijangos C, Steinhart M 2010 J. Mater. Chem. 20 3171
Google Scholar
[26] Liu C L, Chen H L 2018 Soft Matter 14 5461
Google Scholar
[27] Li M, Wu H, Huang Y, Su Z 2012 Macromolecules 45 5196
Google Scholar
[28] Shin K, Woo E, Jeong Y G, Kim C, Huh J, Kim K W 2007 Macromolecules 40 6617
Google Scholar
[29] Garcia G M C, Linares A, Hernandez J J, Rueda D R, Ezquerra T A, Poza P, Davies R J 2010 Nano Lett. 10 1472
Google Scholar
[30] Steinhart M, Goring P, Dernaika H, Prabhukaran M, Gosele U, Hempel E, Thurn A T 2006 Phys. Rev. Lett. 97 027801
Google Scholar
[31] Hui W, Wei W, Huixian Yang A, Su Z 2007 Macromolecules 40 4244
Google Scholar
[32] Wu H, Wang W, Huang Y, Su Z 2009 Macromol Rapid Commun. 30 194
Google Scholar
[33] Wu Y, Gu Q, Ding G, Tong F, Hu Z, Jonas A M 2013 ACS Macro Lett. 2 535
Google Scholar
[34] Ding G, Wu Y, Weng Y, Zhang W, Hu Z 2013 Macromolecules 46 8638
Google Scholar
[35] O'Brien G A, Quinn A J, Tanner D A, Redmond G 2006 Adv. Mater. 18 2379
Google Scholar
[36] O'Carroll D, Iacopino D, O'Riordan A, Lovera P, O'Connor É, O'Brien G A, Redmond G 2008 Adv. Mater. 20 42
Google Scholar
[37] Steinhart M, Wendorff J H, Greiner A, Wehrspohn R B, Nielsch K, Schilling J, Choi J, Gösele U 2002 Science 296 1997
Google Scholar
[38] Ding G, Li C, Li X, Wu Y, Liu J, Li Y, Hu Z, Li Y 2015 Nanoscale 7 11024
Google Scholar
[39] Wei S, Zhang Y, Liu J, Li X, Wu Y, Wei H, Weng Y, Gao X, Li Y, Wang S D, Hu Z 2015 Adv. Mater. Interfaces 2 1500153
Google Scholar
[40] Zhang P, Huang H, He T, Hu Z 2012 ACS Macro Lett. 1 1007
Google Scholar
[41] Li X H, Shen X Z, Gao X, Weng Y Y 2017 RSC Adv. 7 55885
Google Scholar
[42] Ajayan P M, Lijima S 1993 Nature 361 333
Google Scholar
[43] Ugarte D, Stöckli T, Bonard J M, Châtelain A, Heer W A D 1998 Appl. Phys. A 67 101
[44] Nakamura A, Koyama T, Miyata Y, Shinohara H 2016 J. Phys. Chem. C 120 4647
Google Scholar
[45] Liu Z, Liao G, Li S, Pan Y, Wang X, Weng Y, Zhang X, Yang Z 2013 J. Mater. Chem. A 1 13321
Google Scholar
[46] Bai Z, Liu Y, Li T, Li X, Liu B, Liu B, Lu D 2016 J. Phys. Chem. C 120 27820
Google Scholar
[47] Futaba D N, Hata K, Yamada T, Hiraoka T, Hayamizu Y, Kakudate Y, Tanaike O, Hatori H, Yumura M, Iijima S 2006 Nat. Mater. 5 987
Google Scholar
[48] Zhou S, Sheng J, Yang Z, Zhang X 2018 J. Mater. Chem. A 6 8763
Google Scholar
[49] Li X, Bai Z, Liu B, Li T, Lu D 2017 J. Phys. Chem. C 121 14443
Google Scholar
[50] Jen T H, Wang K K , Chen S A 2012 Polymer 53 5850
Google Scholar
[51] Chen S H, Su A C, Chen S A 2005 J. Phys. Chem. B 109 10067
Google Scholar
[52] Torkkeli M, Galbrecht F, Scherf U, Knaapila M 2015 Macromolecules 48 5244
Google Scholar
[53] Sheng J, Zhou S, Yang Z, Zhang X 2018 Langmuir 34 3678
Google Scholar
[54] Wang M, Li L, Zhou S, Tang R, Yang Z, Zhang X 2018 Langmuir 34 10702
Google Scholar
Catalog
Metrics
- Abstract views: 8030
- PDF Downloads: 73
- Cited By: 0