搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

用液晶空间光调制器产生光阱阵列

顾宋博 徐淑武 陆俊发 纪宪明 印建平

引用本文:
Citation:

用液晶空间光调制器产生光阱阵列

顾宋博, 徐淑武, 陆俊发, 纪宪明, 印建平

Generation of the array of optical traps by liquid crystal spatial light modulator

Gu Song-Bo, Xu Shu-Wu, Lu Jun-Fa, Ji Xian-Ming, Yin Jian-Ping
PDF
导出引用
  • 液晶空间光调制器能够方便地用于制作各种衍射型光学元件, 但液晶空间光调制器存在分辨率有限的缺点, 本文提出了用液晶空间光调制器制作相位型光栅, 产生一维和二维光阱阵列的新方案, 用迭代傅里叶级数算法优化设计光栅的相位分布, 在不改变空间光调制器硬件参数设置的情况下, 充分利用和发掘了空间光调制器的优点, 同时又能较好地回避其所存在的缺陷. 根据现有的空间光调制器的技术参数, 模拟仿真设计光栅, 计算光强分布, 结果表明: 用大失谐、小功率激光照明, 能够产生具有很高峰值光强和光强梯度的光阱阵列, 囚禁冷原子的光学偶极势达到mK量级, 对原子的作用力远大于原子的重力.
    Liquid crystal spatial light modulator (LC-SLM) can be readily used to fabricate the diffractive optical elements. However, a disadvantage of the finite resolution always exists in LC-SLM. In this paper, a new scheme of fabricating phase grating with LC-SLM is proposed to produce one-dimensional (1D) and two-dimensional (2D) array of optical traps. The advantage of the LC-SLM is fully utilized and the disadvantage is well avoided in our scheme. The phase distribution of the grating is optimized by using iterative Fourier series expansion. The grating is designed by simulation according to the LC-SLM technique parameters, and the corresponding light intensity distribution is calculated. The results show that the array has very high peak value intensity and big gradient of intensity by illuminating the grating with a large detuning and low power laser. The optical dipole potential of trapping cold atoms achieves the order of mK, and the interaction force between atom and optical field is much greater than the atom gravity.
    • 基金项目: 国家自然科学重点基金(批准号: 11034002), 科技部量子调控重大研究计划项目(批准号: 2011CB921602), 华东师范大学精密光谱科学与技术国家重点实验室开放基金和江苏省自然科学基金(批准号: BK2008183)资助的课题.
    • Funds: Project supported by the Key Program National Natural Science Foundation of China (Grant No. 11034002), the National Key Basic Research and Development Program of China (Grant No. 2011CB921602), the Open Research Fund of State Key Laboratory of Precision Spectroscopy, East China Normal University and the Natural Science Foundation of Jiangsu Province (Grant No. BK2008183).
    [1]

    Greiner M, Mandel O, Esslinger T, Hansch T W, Bloch I 2002 Nature 415 39

    [2]

    Raithel G, Birkl G, Kastberg A, Phillips W D, Rolston S L 1997 Phys. Rev. Lett. 78 630

    [3]

    Vuletic V, Chin C, Kerman A J, Chu S 1998 Phys. Rev. Lett. 81 5768

    [4]

    Dutta S K, Teo B K, Raithel G 1999 Phys. Rev. Lett. 83 1934

    [5]

    Tie L, Xue J K 2011 Chin. Phys. B 20 120311

    [6]

    Wang J J, Zhang A X, Xue J K 2011 Chin. Phys. B 20 080308

    [7]

    Grabouski A, Pfau T 2003 Eur. Phys. J. D 22 347

    [8]

    Folman R 2002 Adv. At. Mol. Opt. Phys. 48 263

    [9]

    Reichel J, Hansel W, Hommelhoff P, Hansch T W 2001 Appl. Phys. B 72 81

    [10]

    Grynberg G, Robilliard C 2001 Phys. Rep. 355 335

    [11]

    Semmler D, Wernsdorfer J, Bissbort U, Byczuk K, Hofstetter W 2010 Phys. Rev. B 82 235115

    [12]

    Michael Kastner 2010 Phys. Rev. Lett. 104 240403

    [13]

    David A, Kessler, Eli Barkai 2010 Phys. Rev. Lett. 105 120602

    [14]

    Yi L, Mejri S, McFerran J J, Le C Y, Bize S 2011 Phys. Rev. Lett. 106 073005

    [15]

    Dumke R, Volk M, Mther T, Buchkremer F B J, Birkl G, Ertmer W 2002 Phys. Rev. Lett. 89 097903

    [16]

    Ji X M, Lu J F, Mu R W, Yin J P 2006 Acta. Phys Sin. 55 3396 (in Chinses) [纪宪明, 陆俊发, 沐仁旺, 印建平 2006 55 3396]

    [17]

    Gabriel M, David E, Jörgen B 2007 Appl. Opt. 46 95

    [18]

    Lu J F, Zhou Q, Ji X M, Yin J P 2011 Acta. Phys. Sin. 60 063701 (in Chinses) [陆俊发, 周琦, 纪宪明, 印建平 2011 60 063701]

    [19]

    Qi X Q, Gao C Q 2011 Acta. Phys. Sin. 60 014208 (in Chinses) [齐晓庆, 高春清 2011 60 014208]

    [20]

    Xheng H D, Yu Y J, Dai L M, Wang T 2010 Acta. Phys. Sin. 59 6145 (in Chinses) [郑华东, 于瀛洁, 代林茂, 王涛 2010 59 6145]

    [21]

    Zhou Q, Lu J F, Yin J P 2010 Chin. Phys. B 19 093202

    [22]

    Zhou Q, Lu J F, Yin J P 2010 Chin. Phys. B 19 123203

    [23]

    Liu X Zhang J, Wu L Y, Gan Y F 2011 Chin. Phys. B 20 024211

    [24]

    Kotlyar V V, Seraphimovich P G, Soifer V A 1998 Opt. Laser. Eng. 29 261

    [25]

    Fienup J R, 1980 Opt. Eng. 19 297

    [26]

    Ripoll O, Kettunen V, Herzig H P 2004 Opt. Eng. 43 2549

    [27]

    Ji X M, Yin J P 2004 Acta Phys. Sin. 53 4163 (in Chinese) [纪宪明, 印建平 2004 53 4163]

  • [1]

    Greiner M, Mandel O, Esslinger T, Hansch T W, Bloch I 2002 Nature 415 39

    [2]

    Raithel G, Birkl G, Kastberg A, Phillips W D, Rolston S L 1997 Phys. Rev. Lett. 78 630

    [3]

    Vuletic V, Chin C, Kerman A J, Chu S 1998 Phys. Rev. Lett. 81 5768

    [4]

    Dutta S K, Teo B K, Raithel G 1999 Phys. Rev. Lett. 83 1934

    [5]

    Tie L, Xue J K 2011 Chin. Phys. B 20 120311

    [6]

    Wang J J, Zhang A X, Xue J K 2011 Chin. Phys. B 20 080308

    [7]

    Grabouski A, Pfau T 2003 Eur. Phys. J. D 22 347

    [8]

    Folman R 2002 Adv. At. Mol. Opt. Phys. 48 263

    [9]

    Reichel J, Hansel W, Hommelhoff P, Hansch T W 2001 Appl. Phys. B 72 81

    [10]

    Grynberg G, Robilliard C 2001 Phys. Rep. 355 335

    [11]

    Semmler D, Wernsdorfer J, Bissbort U, Byczuk K, Hofstetter W 2010 Phys. Rev. B 82 235115

    [12]

    Michael Kastner 2010 Phys. Rev. Lett. 104 240403

    [13]

    David A, Kessler, Eli Barkai 2010 Phys. Rev. Lett. 105 120602

    [14]

    Yi L, Mejri S, McFerran J J, Le C Y, Bize S 2011 Phys. Rev. Lett. 106 073005

    [15]

    Dumke R, Volk M, Mther T, Buchkremer F B J, Birkl G, Ertmer W 2002 Phys. Rev. Lett. 89 097903

    [16]

    Ji X M, Lu J F, Mu R W, Yin J P 2006 Acta. Phys Sin. 55 3396 (in Chinses) [纪宪明, 陆俊发, 沐仁旺, 印建平 2006 55 3396]

    [17]

    Gabriel M, David E, Jörgen B 2007 Appl. Opt. 46 95

    [18]

    Lu J F, Zhou Q, Ji X M, Yin J P 2011 Acta. Phys. Sin. 60 063701 (in Chinses) [陆俊发, 周琦, 纪宪明, 印建平 2011 60 063701]

    [19]

    Qi X Q, Gao C Q 2011 Acta. Phys. Sin. 60 014208 (in Chinses) [齐晓庆, 高春清 2011 60 014208]

    [20]

    Xheng H D, Yu Y J, Dai L M, Wang T 2010 Acta. Phys. Sin. 59 6145 (in Chinses) [郑华东, 于瀛洁, 代林茂, 王涛 2010 59 6145]

    [21]

    Zhou Q, Lu J F, Yin J P 2010 Chin. Phys. B 19 093202

    [22]

    Zhou Q, Lu J F, Yin J P 2010 Chin. Phys. B 19 123203

    [23]

    Liu X Zhang J, Wu L Y, Gan Y F 2011 Chin. Phys. B 20 024211

    [24]

    Kotlyar V V, Seraphimovich P G, Soifer V A 1998 Opt. Laser. Eng. 29 261

    [25]

    Fienup J R, 1980 Opt. Eng. 19 297

    [26]

    Ripoll O, Kettunen V, Herzig H P 2004 Opt. Eng. 43 2549

    [27]

    Ji X M, Yin J P 2004 Acta Phys. Sin. 53 4163 (in Chinese) [纪宪明, 印建平 2004 53 4163]

  • [1] 王良伟, 刘方德, 李云达, 韩伟, 孟增明, 张靖. 基于空间光调制器构建二维任意形状的87Rb原子阵列.  , 2023, 72(6): 064201. doi: 10.7498/aps.72.20222096
    [2] 喻欢欢, 张晨爽, 林丹樱, 于斌, 屈军乐. 基于高速相位型空间光调制器的双光子多焦点结构光显微技术.  , 2021, 70(9): 098701. doi: 10.7498/aps.70.20201797
    [3] 刘纪彩, 成飞, 赵亚男, 郭芬芬. 飞秒激光场中原子所受光学偶极力研究.  , 2019, 68(3): 033701. doi: 10.7498/aps.68.20182016
    [4] 齐淑霞, 刘圣, 李鹏, 韩磊, 程华超, 吴东京, 赵建林. 高效产生任意矢量光场的一种方法.  , 2019, 68(2): 024201. doi: 10.7498/aps.68.20181816
    [5] 白云鹤, 臧瑞环, 汪盼, 荣腾达, 马凤英, 杜艳丽, 段智勇, 弓巧侠. 基于空间光调制器的非相干数字全息单次曝光研究.  , 2018, 67(6): 064202. doi: 10.7498/aps.67.20172127
    [6] 解万财, 黄素娟, 邵蔚, 朱福全, 陈木生. 基于混合光模式阵列的自由空间编码通信.  , 2017, 66(14): 144102. doi: 10.7498/aps.66.144102
    [7] 席思星, 王晓雷, 黄帅, 常胜江, 林列. 基于光学全息的任意矢量光的生成方法.  , 2015, 64(12): 124202. doi: 10.7498/aps.64.124202
    [8] 陈国钧, 周巧巧, 纪宪明, 印建平. 用线偏振光产生可调矢量椭圆空心光束.  , 2014, 63(8): 083701. doi: 10.7498/aps.63.083701
    [9] 陆俊发, 周琦, 潘小青, 印建平. 可操控二种冷原子或冷分子样品的光学双阱新方案及其实验研究.  , 2013, 62(23): 233701. doi: 10.7498/aps.62.233701
    [10] 周巧巧, 徐淑武, 陆俊发, 周琦, 纪宪明, 印建平. 液晶空间光调制器产生可调三光学势阱.  , 2013, 62(15): 153701. doi: 10.7498/aps.62.153701
    [11] 辛璟焘, 高春清, 李辰, 王铮. 螺旋光束经过振幅型衍射光学元件的传输特性及其拓扑电荷数的测量.  , 2012, 61(17): 174202. doi: 10.7498/aps.61.174202
    [12] 徐淑武, 周巧巧, 顾宋博, 纪宪明, 印建平. 用空间光调制器产生三维光阱阵列.  , 2012, 61(22): 223702. doi: 10.7498/aps.61.223702
    [13] 陆俊发, 周琦, 纪宪明, 印建平. 实现冷原子、冷分子光学囚禁的组合三光学势阱方案.  , 2011, 60(6): 063701. doi: 10.7498/aps.60.063701
    [14] 卢向东, 李同保, 马艳, 汪黎栋. 激光汇聚Cr原子沉积的原子光学特性研究.  , 2009, 58(12): 8205-8211. doi: 10.7498/aps.58.8205
    [15] 纪宪明, 徐淑武, 陆俊发, 徐冬梅, 印建平. 用错位相位光栅产生的可调光学双阱.  , 2008, 57(12): 7591-7599. doi: 10.7498/aps.57.7591
    [16] 陆俊发, 纪宪明, 印建平. 实现冷原子或冷分子囚禁的可控制光学四阱.  , 2006, 55(4): 1740-1750. doi: 10.7498/aps.55.1740
    [17] 纪宪明, 陆俊法, 沐仁旺, 印建平. 采用Damman光栅实现冷原子或冷分子囚禁的光阱阵列.  , 2006, 55(7): 3396-3402. doi: 10.7498/aps.55.3396
    [18] 段正路, 张卫平, 李师群, 周兆英, 冯焱颖, 朱 荣. 物质波在原子波导中传输时的波导衔接激发.  , 2005, 54(12): 5622-5628. doi: 10.7498/aps.54.5622
    [19] 郑森林, 陈 君, 林 强. 光脉冲序列对三能级原子重力仪测量精度的影响.  , 2005, 54(8): 3535-3541. doi: 10.7498/aps.54.3535
    [20] 纪宪明, 印建平. 冷原子或冷分子囚禁的可控制光学双阱.  , 2004, 53(12): 4163-4172. doi: 10.7498/aps.53.4163
计量
  • 文章访问数:  8027
  • PDF下载量:  509
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-11-07
  • 修回日期:  2012-01-16
  • 刊出日期:  2012-08-05

/

返回文章
返回
Baidu
map