Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Research on fluorescence lifetime dynamics of quantum dot by single photons modulation spectrum

Zhang Qiang-Qiang Hu Jian-Yong Jing Ming-Yong Li Bin Qin Cheng-Bing Li Yao Xiao Lian-Tuan Jia Suo-Tang

Citation:

Research on fluorescence lifetime dynamics of quantum dot by single photons modulation spectrum

Zhang Qiang-Qiang, Hu Jian-Yong, Jing Ming-Yong, Li Bin, Qin Cheng-Bing, Li Yao, Xiao Lian-Tuan, Jia Suo-Tang
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Fluorescence lifetime is an important characteristic parameter of quantum dot, which plays an important role in studying the optical properties of quantum dot. As a common method to obtain fluorescence lifetime, fluorescence decay curve fitting has been broadly accepted. The least squares fitting to the fluorescence decay curve is performed by using the exponential decay function to obtain fluorescence lifetime with taking the instrument response function into account. However, since the fluorescence decay curve inevitably involves noise photons such as dark counts and stray photons, there is a certain error in the fluorescence lifetime obtained by the method. In order to reduce the error and improve the accuracy of the results, enough photons are required. Nevertheless, too many photons will result in low efficiency of lifetime analysis and temporal resolution, and therefore this method can hardly extract dynamic information on a smaller temporal scale. In this paper, we propose a new method of obtaining the fluorescence lifetime of quantum dot, namely the single photons modulation spectrum. The basic idea is based on the relationship between the fluorescence lifetime and the signal amplitude of pulse repetition frequency in a single dynamic process. The experimental results show that the fluctuation errors and deviation errors of lifetime obtained by our method are significantly lower than those of the previous method when the same number of photons is used. Therefore, high-accuracy fluorescence lifetime can be obtained. When the fluctuation error is 5%, the accuracy is increased by more than one order of magnitude. And to obtain the fluorescence lifetime of the same error level, the number of photons required for our method is much smaller than that of the previous one, which indicates that our method can effectively suppress the disturbance of noise photons and enables the lifetime measurement with high efficiency and temporal resolution. When the fluctuation error and deviation error are both 5%, the efficiency and temporal resolution are increased by more than four times. Finally, real-time lifetime trajectory corresponding to the photoluminescence intensity time trajectory is obtained by our method, where rich dynamic information can be obtained on a sub-second temporal scale. The method of obtaining fluorescence lifetime with powerful anti-noise capability, high efficiency and temporal resolution proposed in this paper can play an important role in studying the fluorescence dynamics of single quantum systems.
    [1]

    Pietryga J M, Park Y S, Lim J, Fidler A F, Bae W K, Brovelli S, Kilmov V I 2016 Chem. Rev. 116 10513

    [2]

    Semonin O E, Luther J M, Choi S, Chen H Y, Gao J, Nozik A J, Beard M C 2011 Science 334 1530

    [3]

    Kim M R, Ma D L 2015 J. Phys. Chem. Lett. 6 85

    [4]

    Bae W K, Park Y S, Lim J, Lee D G, Padilha L A, McDaniel H, Robel I, Lee C H, Pietryga J M, Klimov V I 2013 Nat. Commun. 4 2661

    [5]

    Huang Q Q, Pan J Y, Zhang Y N, Chen J, Tao Z, He C, Zhou K F, Tu Y, Lei W 2016 Opt. Express 24 25955

    [6]

    Sukhovatkin V, Hinds S, Brzozowski L, Sargent E H 2009 Science 324 1542

    [7]

    Fisher B, Caruge J M, Zehnder D, Bawendi M 2005 Phys. Rev. Lett. 94 087403

    [8]

    Klimov V I, Mikhailovsky A A, McBranch D W, Leatherdale C A, Bawendi M G 2000 Science 287 1011

    [9]

    Klimov V I, Mikhailovsky A A, Xu S, Malko A, Hollingsworth J A, Leatherdale C A, Eisler H J, Bawendi M G 2000 Science 290 314

    [10]

    Chen Q G, Zhou T Y, He C Y, Jiang Y Q, Chen X 2011 Anal. Methods 3 1471

    [11]

    Fan Y Y, Liu H L, Han R C, Huang L, Shi H, Sha Y L, Jiang Y Q 2015 Sci. Rep. 5 9908

    [12]

    Welsher K, Yang H 2014 Nat. Nanotechnol. 9 198

    [13]

    Hu F R, Lv B H, Yin C Y, Zhang C F, Wang X Y, Lounis B, Xiao M 2016 Phys. Rev. Lett. 116 106404

    [14]

    Yuan G C, Gómez D E, Kirkwood N, Boldt K, Mulvaney P 2018 ACS Nano 12 3397

    [15]

    Fisher B R, Eisler H J, Stott N E, Bawendi M G 2004 J. Phys. Chem. B 108 143

    [16]

    Schlegel G, Bohnenberger J, Potapova I, Mews A 2002 Phys. Rev. Lett. 88 137401

    [17]

    Schmidt R, Krasselt C, Gohler C, von Borczyskowski C 2014 ACS Nano 8 3506

    [18]

    Zhang K, Chang H Y, Fu A H, Alivisatos A P, Yang H 2006 Nano Lett. 6 843

    [19]

    Htoon H, Hollingsworth J A, Dickerson R, Klimov V I 2003 Phys. Rev. Lett. 91 227401

    [20]

    Rabouw F T, Vaxenburg R, Bakulin A A, van Dijk Moes R J A, Bakker H J, Rodina A, Lifshitz E, Efros A L, Koenderink A F, Vanmaekelbergh D 2015 ACS Nano 9 10366

    [21]

    Li Z J, Zhang G F, Li B, Chen R Y, Qin C B, Gao Y, Xiao L T, Jia S T 2017 Appl. Phys. Lett. 111 153106

    [22]

    Yang C G, Zhang G F, Feng L H, Li B, Li Z J, Chen R Y, Qin C B, Gao Y, Xiao L T, Jia S T 2018 Opt. Express 26 11889

    [23]

    Zang H D, Routh P K, Huang Y, Chen J S, Sutter E, Sutter P, Cotlet M 2016 ACS Nano 10 4790

    [24]

    Rusimova K R, Purkiss R M, Howes R, Lee F, Crampin S, Sloan P A 2018 Science 361 1012

    [25]

    Li B, Zhang G F, Yang C G, Li Z J, Chen R Y, Qin C B, Gao Y, Huang H, Xiao L T, Jia S T 2018 Opt. Express 26 4674

    [26]

    Hu J Y, Yu B, Jing M Y, Xiao L T, Jia S T, Qin G Q, Long G L 2016 Light-Sci. Appl. 5 e16144

    [27]

    Hu J Y, Liu Y, Liu L L, Yu B, Zhang G F, Xiao L T, Jia S T 2015 Photon. Res. 3 24

    [28]

    Mobli M, Hoch J C 2014 Prog. Nucl. Magn. Reson. Spectrosc. 83 21

    [29]

    He W J, Qin C B, Qiao Z X, Zhang G F, Xiao L T, Jia S T 2016 Carbon 109 264

  • [1]

    Pietryga J M, Park Y S, Lim J, Fidler A F, Bae W K, Brovelli S, Kilmov V I 2016 Chem. Rev. 116 10513

    [2]

    Semonin O E, Luther J M, Choi S, Chen H Y, Gao J, Nozik A J, Beard M C 2011 Science 334 1530

    [3]

    Kim M R, Ma D L 2015 J. Phys. Chem. Lett. 6 85

    [4]

    Bae W K, Park Y S, Lim J, Lee D G, Padilha L A, McDaniel H, Robel I, Lee C H, Pietryga J M, Klimov V I 2013 Nat. Commun. 4 2661

    [5]

    Huang Q Q, Pan J Y, Zhang Y N, Chen J, Tao Z, He C, Zhou K F, Tu Y, Lei W 2016 Opt. Express 24 25955

    [6]

    Sukhovatkin V, Hinds S, Brzozowski L, Sargent E H 2009 Science 324 1542

    [7]

    Fisher B, Caruge J M, Zehnder D, Bawendi M 2005 Phys. Rev. Lett. 94 087403

    [8]

    Klimov V I, Mikhailovsky A A, McBranch D W, Leatherdale C A, Bawendi M G 2000 Science 287 1011

    [9]

    Klimov V I, Mikhailovsky A A, Xu S, Malko A, Hollingsworth J A, Leatherdale C A, Eisler H J, Bawendi M G 2000 Science 290 314

    [10]

    Chen Q G, Zhou T Y, He C Y, Jiang Y Q, Chen X 2011 Anal. Methods 3 1471

    [11]

    Fan Y Y, Liu H L, Han R C, Huang L, Shi H, Sha Y L, Jiang Y Q 2015 Sci. Rep. 5 9908

    [12]

    Welsher K, Yang H 2014 Nat. Nanotechnol. 9 198

    [13]

    Hu F R, Lv B H, Yin C Y, Zhang C F, Wang X Y, Lounis B, Xiao M 2016 Phys. Rev. Lett. 116 106404

    [14]

    Yuan G C, Gómez D E, Kirkwood N, Boldt K, Mulvaney P 2018 ACS Nano 12 3397

    [15]

    Fisher B R, Eisler H J, Stott N E, Bawendi M G 2004 J. Phys. Chem. B 108 143

    [16]

    Schlegel G, Bohnenberger J, Potapova I, Mews A 2002 Phys. Rev. Lett. 88 137401

    [17]

    Schmidt R, Krasselt C, Gohler C, von Borczyskowski C 2014 ACS Nano 8 3506

    [18]

    Zhang K, Chang H Y, Fu A H, Alivisatos A P, Yang H 2006 Nano Lett. 6 843

    [19]

    Htoon H, Hollingsworth J A, Dickerson R, Klimov V I 2003 Phys. Rev. Lett. 91 227401

    [20]

    Rabouw F T, Vaxenburg R, Bakulin A A, van Dijk Moes R J A, Bakker H J, Rodina A, Lifshitz E, Efros A L, Koenderink A F, Vanmaekelbergh D 2015 ACS Nano 9 10366

    [21]

    Li Z J, Zhang G F, Li B, Chen R Y, Qin C B, Gao Y, Xiao L T, Jia S T 2017 Appl. Phys. Lett. 111 153106

    [22]

    Yang C G, Zhang G F, Feng L H, Li B, Li Z J, Chen R Y, Qin C B, Gao Y, Xiao L T, Jia S T 2018 Opt. Express 26 11889

    [23]

    Zang H D, Routh P K, Huang Y, Chen J S, Sutter E, Sutter P, Cotlet M 2016 ACS Nano 10 4790

    [24]

    Rusimova K R, Purkiss R M, Howes R, Lee F, Crampin S, Sloan P A 2018 Science 361 1012

    [25]

    Li B, Zhang G F, Yang C G, Li Z J, Chen R Y, Qin C B, Gao Y, Huang H, Xiao L T, Jia S T 2018 Opt. Express 26 4674

    [26]

    Hu J Y, Yu B, Jing M Y, Xiao L T, Jia S T, Qin G Q, Long G L 2016 Light-Sci. Appl. 5 e16144

    [27]

    Hu J Y, Liu Y, Liu L L, Yu B, Zhang G F, Xiao L T, Jia S T 2015 Photon. Res. 3 24

    [28]

    Mobli M, Hoch J C 2014 Prog. Nucl. Magn. Reson. Spectrosc. 83 21

    [29]

    He W J, Qin C B, Qiao Z X, Zhang G F, Xiao L T, Jia S T 2016 Carbon 109 264

  • [1] Li Wei, Fu Jing, Yang Yun-Yun, He Ji-Zhou. Quantum dot refrigerator driven by photon. Acta Physica Sinica, 2019, 68(22): 220501. doi: 10.7498/aps.68.20191091
    [2] Li Tian-Xin, Weng Qian-Chun, Lu Jian, Xia Hui, An Zheng-Hua, Chen Zhang-Hai, Chen Ping-Ping, Lu Wei. Single photon detection and circular polarized emission manipulated with individual quantum dot. Acta Physica Sinica, 2018, 67(22): 227301. doi: 10.7498/aps.67.20182049
    [3] Qiao Zhi-Xing, Qin Cheng-Bing, He Wen-Jun, Gong Ya-Ni, Xiao Lian-Tuan, Zhang Guo-Feng, Chen Rui-Yun, Gao Yan, Jia Suo-Tang. Lifetime modulation of graphene oxide film by laser direct writing for the fabrication of micropatterns. Acta Physica Sinica, 2018, 67(6): 066802. doi: 10.7498/aps.67.20172331
    [4] Zhao Rui-Tong, Liang Rui-Sheng, Wang Fa-Qiang. Quantum entanglement concentration for photonic polarization state assisted by electron spin. Acta Physica Sinica, 2017, 66(24): 240301. doi: 10.7498/aps.66.240301
    [5] Wang Zao, Zhang Guo-Feng, Li Bin, Chen Rui-Yun, Qin Cheng-Bing, Xiao Lian-Tuan, Jia Suo-Tang. Suppression of the blinking of single QDs by using an N-type semiconductor nanomaterial. Acta Physica Sinica, 2015, 64(24): 247803. doi: 10.7498/aps.64.247803
    [6] Wu Jian-Fang, Zhang Guo-Feng, Chen Rui-Yun, Qin Cheng-Bin, Xiao Lian-Tuan, Jia Suo-Tang. Influence of interfacial electron transfer on fluorescence blinking of quantum dots. Acta Physica Sinica, 2014, 63(16): 167302. doi: 10.7498/aps.63.167302
    [7] Bi Chang-Hong, Meng Qing-Yu. Luminescent properties and energy transfer mechanism of CaWO4:Sm3+ phosphors. Acta Physica Sinica, 2013, 62(19): 197804. doi: 10.7498/aps.62.197804
    [8] Wan Wen-Bo, Hua Deng-Xin, Le Jing, Liu Mei-Xia, Cao Ning. Laser-induced chlorophyll fluorescence lifetime measurement and characteristic analysis. Acta Physica Sinica, 2013, 62(19): 190601. doi: 10.7498/aps.62.190601
    [9] Ren Hong-Liang. Design and error analysis for optical tweezers based on finite conjugate microscope. Acta Physica Sinica, 2013, 62(10): 100701. doi: 10.7498/aps.62.100701
    [10] Ren Hong-Liang, Ding Pan-Feng, Li Xiao-Yan. Influences of axial position manipulation and misalignments of optical elements on radial trap position manipulation. Acta Physica Sinica, 2012, 61(21): 210701. doi: 10.7498/aps.61.210701
    [11] Gu Li-Shan, Wang Dong-Sheng, Peng Yong-Gang, Zheng Yu-Ju. Statistics property of polarized photon emission driven bya pair of pulses in single quantum dot. Acta Physica Sinica, 2011, 60(8): 084207. doi: 10.7498/aps.60.084207
    [12] Peng Yong-Gang, Zhang Xi-Zhong, Zhang Zhao-Yu, Zheng Yu-Jun. Photon emission of single quantum dot driven by continuous external field studied by using the generating function. Acta Physica Sinica, 2010, 59(3): 1791-1796. doi: 10.7498/aps.59.1791
    [13] Gao Dang-Li, Zhang Xiang-Yu, Zhang Zheng-Long, Xu Liang-Min, Lei Yu, Zheng Hai-Rong. Improvement on the up-conversion fluorescence emission in Tm3+ doped optical materials by adjusting phonon distribution. Acta Physica Sinica, 2009, 58(9): 6108-6112. doi: 10.7498/aps.58.6108
    [14] Wang Min, Cen Yu-Wan, Hu Xiao-Fang, Yu Xiao-Liu, Zhu Pei-Ping. Error mechanism of light source for synchrotron radiation computed tomography technique. Acta Physica Sinica, 2008, 57(10): 6202-6206. doi: 10.7498/aps.57.6202
    [15] Deng Yu-Xiang, Yan Xiao-Hong, Tang Na-Si. Electron transport through a quantum dot ring. Acta Physica Sinica, 2006, 55(4): 2027-2032. doi: 10.7498/aps.55.2027
    [16] Miao Zhuang, Li Shan-Feng, Zhang Qing-Yu. Effect of Y co-doping on the photoluminescence and lifetime of Er3+ in silicate glasses. Acta Physica Sinica, 2006, 55(8): 4321-4326. doi: 10.7498/aps.55.4321
    [17] Liu Li-Xin, Qu Jun-Le, Lin Zi-Yang, Chen Dan-Ni, Xu Gai-Xia, Hu Tao, Guo Bao-Ping, Niu Han-Ben. Time-resolved two-photon excitation fluorescence spectroscopy. Acta Physica Sinica, 2006, 55(12): 6281-6286. doi: 10.7498/aps.55.6281
    [18] Lin Zi-Yang, Fu Zhe, Liu Li-Xin, Hu Tao, Qu Jun-Le, Guo Bao-Ping, Niu Han-Ben. Information processing of multidimensional simultaneity fluorescence with two-photon array excitation. Acta Physica Sinica, 2006, 55(12): 6701-6707. doi: 10.7498/aps.55.6701
    [19] Zhou Hui-Jun, Cheng Mu-Tian, Liu Shao-Ding, Wang Qu-Quan, Zhan Ming-Sheng, Xue Qi-Kun. High polarization properties of single-photon emission from anisotropic InGaAs quantum dots. Acta Physica Sinica, 2005, 54(9): 4141-4145. doi: 10.7498/aps.54.4141
    [20] Wang Qian-Qian, Wei Guang-Hui. . Acta Physica Sinica, 2002, 51(5): 1031-1034. doi: 10.7498/aps.51.1031
Metrics
  • Abstract views:  6304
  • PDF Downloads:  95
  • Cited By: 0
Publishing process
  • Received Date:  05 October 2018
  • Accepted Date:  07 November 2018
  • Published Online:  05 January 2019

/

返回文章
返回
Baidu
map