Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Recent progress of solidification of suspensions

You Jia-Xue Wang Jin-Cheng Wang Li-Lin Wang Zhi-Jun Li Jun-Jie Lin Xin

Citation:

Recent progress of solidification of suspensions

You Jia-Xue, Wang Jin-Cheng, Wang Li-Lin, Wang Zhi-Jun, Li Jun-Jie, Lin Xin
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Suspensions include solvent and uniformly dispersed particles. Solidification of suspensions is to freeze the solvent while numerous particles disturb the pattern formation during the growth of the solid/liquid interface. It is a new interdisciplinary subject, involving the fields of freeze-casting porous materials, frost heaving, sea ice and biological tissue engineering and so on. Especially in recent years, many advanced materials with excellent properties were developed based on the processing of suspension solidification. Experimental phenomenon in suspension solidification is different from that in alloy solidification, such as the close-packed particle layer and self assembly, the ice lamellae structure and the periodic ice lenses and so on. Up to now, the formation mechanisms of these microstructures are still unclear. In this paper, we first review the historical development of suspension solidification in theory and in experiment. Then we demonstrate some recent progress of microstructural evolution and dynamical particle packing of suspension solidification. Finally, the outlooks of the future study on solidification of suspensions are also presented.
    [1]

    Deville S 2013 J. Mater. Res. 28 2202

    [2]

    Wettlaufer J S, Worster M G 2006 Annu. Rev. Fluid Mech. 38 427

    [3]

    Peppin S S L, Style R W 2013 Vadose Zone J. 12 1

    [4]

    Zhang L, Ma W, Yang C, Yuan C 2014 Eng. Geol. 181 233

    [5]

    Liu J, Wickramaratne N P, Qiao S Z, Jaroniec M 2015 Nat. Mater. 14 763

    [6]

    Xia Z, Yu X, Jiang X, Brody H D, Rowe D W, Wei M 2013 Acta Biomater. 9 7308

    [7]

    Wegst U G K, Bai H, Saiz E, Tomsia A P, Ritchie R O 2015 Nat. Mater. 14 23

    [8]

    Deville S 2008 Adv. Eng. Matter 10 155

    [9]

    Youssef Y M, Dashwood R J, Lee P D 2005 Composites Part A 36 747

    [10]

    Stefanescu D M, Juretzko F R, Catalina A, Dhindaw B, Sen S, Curreri P A 1998 Metall. Mater. Trans. A 29 1697

    [11]

    You J X, Wang Z J, Li J J, Wang J C 2015 Chin. Phys. B 24 078107

    [12]

    You J, Wang J, Wang L, Wang Z, Li J, Lin X 2018 Colloid. Surface A 553 681

    [13]

    Mukai S R, Nishihara H, Tamon H 2004 Chem. Commun. 7 874

    [14]

    Bai H, Polini A, Delattre B, Tomsia A P 2013 Chem. Mater. 25 4551

    [15]

    Rempel A W 2010 J. Glaciol. 56 1122

    [16]

    Hunger P M, Donius A E, Wegst U G K 2013 Acta Biomater. 9 6338

    [17]

    Roberts A D, Li X, Zhang H 2014 Chem. Soc. Rev. 43 4341

    [18]

    Bai H, Wang D, Delattre B, Gao W, de Coninck J, Li S, Tomsia A P 2015 Acta Biomater. 20 113

    [19]

    Munch E, Launey M E, Alsem D H, Saiz E, Tomsia A P, Ritchie R O 2008 Science 322 1516

    [20]

    Garvin J, Yang Y, Udaykumar H 2007 Int. J. Heat Mass Trans. 50 2969

    [21]

    Rempel A W 2011 Quaternary Res. 75 316

    [22]

    Zhu D M, Vilches O E, Dash J G, Sing B, Wettlaufer J S 2000 Phys. Rev. Lett. 85 4908

    [23]

    Deville S, Maire E, Bernard-Granger G, Lasalle A, Bogner A, Gauthier C, Leloup J, Guizard C 2009 Nature Mater. 8 966

    [24]

    Zuo K H, Zeng Y P, Jiang D 2010 Mater. Sci. Eng.: C 30 283

    [25]

    Wegst U G K, Ashby M F 2004 Philos. Mag. 84 2167

    [26]

    Peppin S, Elliott J, Worster M G 2006 J. Fluid Mech. 554 147

    [27]

    Anderson A M, Worster M G 2014 J. Fluid Mech. 758 786

    [28]

    Dash J G, Rempel A W, Wettlaufer J S 2006 Rev. Mod. Phys. 78 695

    [29]

    Wettlaufer J S, Worster M G, Wilen L A 1997 J. Phys. Chem. B 101 6137

    [30]

    Corte A E 1962 J. Geophys. Res. 67 1085

    [31]

    Uhlmann D R, Chalmers B, Jackson K 1964 J. Appl. Phys. 35 2986

    [32]

    Cissé J, Bolling G F 1971 J. Cryst. Growth 10 67

    [33]

    Köber C, Rau G, Cosman M D, Cravalho E G 1985 J. Cryst. Growth 72 649

    [34]

    Shangguan D, Ahuja S, Stefanescu D M 1992 Metall. Mater. Trans. A 23 669

    [35]

    Rempel A, Worster M G 1999 J. Cryst. Growth 205 427

    [36]

    Rempel A W, Wettlaufer J S, Worster M G 2001 Phys. Rev. Lett. 87 088501

    [37]

    Rempel A W, Worster M G 2001 J. Cryst. Growth 223 420

    [38]

    Dedovets D, Monteux C, Deville S 2018 Science 360 303

    [39]

    Peppin S S, Worster M G, Wettlaufer J 2007 Proc. R. Soc. A 463 723

    [40]

    You J, Wang L, Wang Z, Li J, Wang J, Lin X, Huang W 2016 Sci. Rep. 6 28434

    [41]

    Waschkies T, Oberacker R, Hoffmann M J 2011 Acta Mater. 59 5135

    [42]

    Style R W, Peppin S S L, Cocks A C F, Wettlaufer J S 2011 Phys. Rev. E 84 041402

    [43]

    Kozlowski T 2009 Cold Reg. Sci. Technol. 59 25

    [44]

    Carnahan N F, Starling K E 1969 J. Chem. Phys. 51 635

    [45]

    Peppin S, Wettlaufer J, Worster M 2008 Phys. Rev. Lett. 100 238301

    [46]

    Kozlowski T 2004 Cold Reg. Sci. Technol. 38 93

    [47]

    You J, Wang L, Wang Z, Li J, Wang J, Lin X, Huang W 2015 Rev. Sci. Instrum. 86 084901

    [48]

    Bodnar R 1993 Geochim. Cosmochimica Acta 57 683

    [49]

    Mullins W W, Sekerka R F 1964 J. Appl. Phys. 35 444

    [50]

    Wang L, You J, Wang Z, Wang J, Lin X 2016 Sci. Rep. 6 23358

    [51]

    Taber S 1929 J. Geol. 37 428

    [52]

    Taber S 1930 J. Geol. 38 303

    [53]

    Rempel A W 2012 Vadose Zone J. 11 1

    [54]

    Rempel A W, Wettlaufer J, Worster M 2004 J. Fluid Mech. 498 227

    [55]

    Nixon J F 1991 Can. Geotech. J. 28 843

    [56]

    Anderson A M, Worster M G 2012 Langmuir 28 16512

    [57]

    You J, Wang Z, Worster M G 2018 Acta Mater. 157 288

    [58]

    Schollick J M H, Style R W, Curran A, Wettlaufer J S, Dufresne E R, Warren P B, Velikov K P, Dullens R P A, Aarts D G A L 2016 J. Phys. Chem. B 120 3941

    [59]

    Saint-Michel B, Georgelin M, Deville S, Pocheau A 2017 Langmuir 33 5617

    [60]

    Jackson K A, Chalmers B 1958 J. Appl. Phys. 29 1178

    [61]

    Fowler A C 1989 SIAM J. Appl. Math. 49 991

    [62]

    O’Neill K, Miller R D 1985 Water Resour. Res. 21 281

    [63]

    Watanabe K, Mizoguchi M 2000 J. Cryst. Growth 213 135

    [64]

    Watanabe K, Muto Y, Mizoguchi M 2001 Cryst. Growth Des. 1 207

    [65]

    Watanabe K, Mizoguchi M 2002 Cold Reg. Sci. Technol. 34 103

    [66]

    Watanabe K 2002 J. Cryst. Growth 237 2194

    [67]

    Shanti N O, Araki K, Halloran J W 2006 J. Am. Ceram. Soc. 89 2444

    [68]

    Sylvain D, Sylvain M, Jordi S 2015 Sci. Technol. Adv. Matter 16 043501

    [69]

    Barr S A, Luijten E 2010 Acta Mater. 58 709

    [70]

    You J, Wang J, Wang L, Wang Z, Wang Z, Li J, Lin X 2017 Colloid. Surface A 531 93

    [71]

    Kumaraswamy G, Biswas B, Choudhury C K 2016 Faraday Discuss. 186 61

    [72]

    You J, Wang J, Wang L, Wang Z, Li J, Lin X 2018 Colloid. Surface A 543 126

    [73]

    You J, Wang J, Wang L, Wang Z, Li J, Lin X 2016 Chin. Phys. B 25 128202

  • [1]

    Deville S 2013 J. Mater. Res. 28 2202

    [2]

    Wettlaufer J S, Worster M G 2006 Annu. Rev. Fluid Mech. 38 427

    [3]

    Peppin S S L, Style R W 2013 Vadose Zone J. 12 1

    [4]

    Zhang L, Ma W, Yang C, Yuan C 2014 Eng. Geol. 181 233

    [5]

    Liu J, Wickramaratne N P, Qiao S Z, Jaroniec M 2015 Nat. Mater. 14 763

    [6]

    Xia Z, Yu X, Jiang X, Brody H D, Rowe D W, Wei M 2013 Acta Biomater. 9 7308

    [7]

    Wegst U G K, Bai H, Saiz E, Tomsia A P, Ritchie R O 2015 Nat. Mater. 14 23

    [8]

    Deville S 2008 Adv. Eng. Matter 10 155

    [9]

    Youssef Y M, Dashwood R J, Lee P D 2005 Composites Part A 36 747

    [10]

    Stefanescu D M, Juretzko F R, Catalina A, Dhindaw B, Sen S, Curreri P A 1998 Metall. Mater. Trans. A 29 1697

    [11]

    You J X, Wang Z J, Li J J, Wang J C 2015 Chin. Phys. B 24 078107

    [12]

    You J, Wang J, Wang L, Wang Z, Li J, Lin X 2018 Colloid. Surface A 553 681

    [13]

    Mukai S R, Nishihara H, Tamon H 2004 Chem. Commun. 7 874

    [14]

    Bai H, Polini A, Delattre B, Tomsia A P 2013 Chem. Mater. 25 4551

    [15]

    Rempel A W 2010 J. Glaciol. 56 1122

    [16]

    Hunger P M, Donius A E, Wegst U G K 2013 Acta Biomater. 9 6338

    [17]

    Roberts A D, Li X, Zhang H 2014 Chem. Soc. Rev. 43 4341

    [18]

    Bai H, Wang D, Delattre B, Gao W, de Coninck J, Li S, Tomsia A P 2015 Acta Biomater. 20 113

    [19]

    Munch E, Launey M E, Alsem D H, Saiz E, Tomsia A P, Ritchie R O 2008 Science 322 1516

    [20]

    Garvin J, Yang Y, Udaykumar H 2007 Int. J. Heat Mass Trans. 50 2969

    [21]

    Rempel A W 2011 Quaternary Res. 75 316

    [22]

    Zhu D M, Vilches O E, Dash J G, Sing B, Wettlaufer J S 2000 Phys. Rev. Lett. 85 4908

    [23]

    Deville S, Maire E, Bernard-Granger G, Lasalle A, Bogner A, Gauthier C, Leloup J, Guizard C 2009 Nature Mater. 8 966

    [24]

    Zuo K H, Zeng Y P, Jiang D 2010 Mater. Sci. Eng.: C 30 283

    [25]

    Wegst U G K, Ashby M F 2004 Philos. Mag. 84 2167

    [26]

    Peppin S, Elliott J, Worster M G 2006 J. Fluid Mech. 554 147

    [27]

    Anderson A M, Worster M G 2014 J. Fluid Mech. 758 786

    [28]

    Dash J G, Rempel A W, Wettlaufer J S 2006 Rev. Mod. Phys. 78 695

    [29]

    Wettlaufer J S, Worster M G, Wilen L A 1997 J. Phys. Chem. B 101 6137

    [30]

    Corte A E 1962 J. Geophys. Res. 67 1085

    [31]

    Uhlmann D R, Chalmers B, Jackson K 1964 J. Appl. Phys. 35 2986

    [32]

    Cissé J, Bolling G F 1971 J. Cryst. Growth 10 67

    [33]

    Köber C, Rau G, Cosman M D, Cravalho E G 1985 J. Cryst. Growth 72 649

    [34]

    Shangguan D, Ahuja S, Stefanescu D M 1992 Metall. Mater. Trans. A 23 669

    [35]

    Rempel A, Worster M G 1999 J. Cryst. Growth 205 427

    [36]

    Rempel A W, Wettlaufer J S, Worster M G 2001 Phys. Rev. Lett. 87 088501

    [37]

    Rempel A W, Worster M G 2001 J. Cryst. Growth 223 420

    [38]

    Dedovets D, Monteux C, Deville S 2018 Science 360 303

    [39]

    Peppin S S, Worster M G, Wettlaufer J 2007 Proc. R. Soc. A 463 723

    [40]

    You J, Wang L, Wang Z, Li J, Wang J, Lin X, Huang W 2016 Sci. Rep. 6 28434

    [41]

    Waschkies T, Oberacker R, Hoffmann M J 2011 Acta Mater. 59 5135

    [42]

    Style R W, Peppin S S L, Cocks A C F, Wettlaufer J S 2011 Phys. Rev. E 84 041402

    [43]

    Kozlowski T 2009 Cold Reg. Sci. Technol. 59 25

    [44]

    Carnahan N F, Starling K E 1969 J. Chem. Phys. 51 635

    [45]

    Peppin S, Wettlaufer J, Worster M 2008 Phys. Rev. Lett. 100 238301

    [46]

    Kozlowski T 2004 Cold Reg. Sci. Technol. 38 93

    [47]

    You J, Wang L, Wang Z, Li J, Wang J, Lin X, Huang W 2015 Rev. Sci. Instrum. 86 084901

    [48]

    Bodnar R 1993 Geochim. Cosmochimica Acta 57 683

    [49]

    Mullins W W, Sekerka R F 1964 J. Appl. Phys. 35 444

    [50]

    Wang L, You J, Wang Z, Wang J, Lin X 2016 Sci. Rep. 6 23358

    [51]

    Taber S 1929 J. Geol. 37 428

    [52]

    Taber S 1930 J. Geol. 38 303

    [53]

    Rempel A W 2012 Vadose Zone J. 11 1

    [54]

    Rempel A W, Wettlaufer J, Worster M 2004 J. Fluid Mech. 498 227

    [55]

    Nixon J F 1991 Can. Geotech. J. 28 843

    [56]

    Anderson A M, Worster M G 2012 Langmuir 28 16512

    [57]

    You J, Wang Z, Worster M G 2018 Acta Mater. 157 288

    [58]

    Schollick J M H, Style R W, Curran A, Wettlaufer J S, Dufresne E R, Warren P B, Velikov K P, Dullens R P A, Aarts D G A L 2016 J. Phys. Chem. B 120 3941

    [59]

    Saint-Michel B, Georgelin M, Deville S, Pocheau A 2017 Langmuir 33 5617

    [60]

    Jackson K A, Chalmers B 1958 J. Appl. Phys. 29 1178

    [61]

    Fowler A C 1989 SIAM J. Appl. Math. 49 991

    [62]

    O’Neill K, Miller R D 1985 Water Resour. Res. 21 281

    [63]

    Watanabe K, Mizoguchi M 2000 J. Cryst. Growth 213 135

    [64]

    Watanabe K, Muto Y, Mizoguchi M 2001 Cryst. Growth Des. 1 207

    [65]

    Watanabe K, Mizoguchi M 2002 Cold Reg. Sci. Technol. 34 103

    [66]

    Watanabe K 2002 J. Cryst. Growth 237 2194

    [67]

    Shanti N O, Araki K, Halloran J W 2006 J. Am. Ceram. Soc. 89 2444

    [68]

    Sylvain D, Sylvain M, Jordi S 2015 Sci. Technol. Adv. Matter 16 043501

    [69]

    Barr S A, Luijten E 2010 Acta Mater. 58 709

    [70]

    You J, Wang J, Wang L, Wang Z, Wang Z, Li J, Lin X 2017 Colloid. Surface A 531 93

    [71]

    Kumaraswamy G, Biswas B, Choudhury C K 2016 Faraday Discuss. 186 61

    [72]

    You J, Wang J, Wang L, Wang Z, Li J, Lin X 2018 Colloid. Surface A 543 126

    [73]

    You J, Wang J, Wang L, Wang Z, Li J, Lin X 2016 Chin. Phys. B 25 128202

  • [1] Li Yu-Fan, Xue Wen-Qing, Li Yu-Chao, Zhan Yan-Hu, Xie Qian, Li Yan-Kai, Zha Jun-Wei. Research progress of flexible energy storage dielectric materials with sandwiched structure. Acta Physica Sinica, 2024, 73(2): 027702. doi: 10.7498/aps.73.20230614
    [2] Li Yan, He Hong, Dang Wei-Wu, Chen Xue-Lian, Sun Can, Zheng Jia-Lu. Research progress of light irradiation stability of functional layers in perovskite solar cells. Acta Physica Sinica, 2021, 70(9): 098402. doi: 10.7498/aps.70.20201762
    [3] Jia Ning,  Wang Shan-Peng,  Tao Xu-Tang. Research progress of mid-and far-infrared nonlinear optical crystals. Acta Physica Sinica, 2018, 67(24): 244203. doi: 10.7498/aps.67.20181591
    [4] Mi Guang-Bao, Huang Xu, Cao Jing-Xia, Wang Bao, Cao Chun-Xiao. Microstructure characteristics of burning products of Ti-V-Cr fireproof titanium alloy by frictional ignition. Acta Physica Sinica, 2016, 65(5): 056103. doi: 10.7498/aps.65.056103
    [5] Xia Hui, Yang Wei-Guo. Permeability of nano SiO2 aggregates in concentrated suspension. Acta Physica Sinica, 2016, 65(14): 144203. doi: 10.7498/aps.65.144203
    [6] Wang De, Shen Rong, Liu Can-Can, Wei Shi-Qiang, Lu Kun-Quan. Evaporation enhancement effect of TiO2 nanoparticles on silicone oil in electrorheological fluid suspension. Acta Physica Sinica, 2015, 64(15): 154704. doi: 10.7498/aps.64.154704
    [7] Wang Xiang, Chao Run-Ze, Guan Ren-Guo, Li Yuan-Dong, Liu Chun-Ming. Theoretical study on the model of metalic melt shearing flow near the surface and its effect on solidification microstructure. Acta Physica Sinica, 2015, 64(11): 116601. doi: 10.7498/aps.64.116601
    [8] Meng Guang-Hui, Lin Xin. Characteristic scale selection of lamellar spacings in binary eutectic solidification. Acta Physica Sinica, 2014, 63(6): 068104. doi: 10.7498/aps.63.068104
    [9] Chen Hai-Nan, Sun Dong-Ke, Dai Ting, Zhu Ming-Fang. Modeling of the interaction between solidification interface and bubble using the lattice Boltzmann method with large density ratio. Acta Physica Sinica, 2013, 62(12): 120502. doi: 10.7498/aps.62.120502
    [10] Yuan Yi, Li Ying-Long, Wang Qiang, Liu Tie, Gao Peng-Fei, He Ji-Cheng. Influence of high magnetic fields on phase transition and solidification microstructure in Mn-Sb peritectic alloy. Acta Physica Sinica, 2013, 62(20): 208106. doi: 10.7498/aps.62.208106
    [11] Ding Yong, Chen Ren-Jie, Guo Shuai, Liu Xing-Ming, Lee Dong, Yan A-Ru. Effect of Dy additive on microstructure and magnetic propertiesof rapidly solidified Nd-Fe-B strips. Acta Physica Sinica, 2011, 60(5): 057103. doi: 10.7498/aps.60.057103
    [12] Wang Chun-Jiang, Yuan Yi, Wang Qiang, Liu Tie, Lou Chang-Sheng, He Ji-Cheng. Effect of high magnetic fields on the migration of second phases during the solidification of metals. Acta Physica Sinica, 2010, 59(5): 3116-3122. doi: 10.7498/aps.59.3116
    [13] Zhang Zong-Ning, Liu Mei-Lin, Li Wei, Geng Chang-Jian, Zhao Qian, Zhang Lin. Molecular dynamics study of freezing a molten Cu55 cluster on Cu(010)surface. Acta Physica Sinica, 2009, 58(13): 67-S71. doi: 10.7498/aps.58.67
    [14] Xu Song-Ning, Zhang Lin, Zhang Cai-Bei, Qi Yang. Molecular dynamics simulations of a molten Cu55 cluster embedded in face-centred cubic bulk during. Acta Physica Sinica, 2009, 58(13): 40-S46. doi: 10.7498/aps.58.40
    [15] Shan Bo-Wei, Lin Xin, Wei Lei, Huang Wei-Dong. A cellular automaton model for dendrite solidification of pure substance. Acta Physica Sinica, 2009, 58(2): 1132-1138. doi: 10.7498/aps.58.1132
    [16] Zhu Chang-Sheng, Feng Li, Wang Zhi-Ping, Xiao Rong-Zhen. Numerical simulation of three-dimensional dendritic growth using phase-field method. Acta Physica Sinica, 2009, 58(11): 8055-8061. doi: 10.7498/aps.58.8055
    [17] Han Yong, Wang Ti-Jian, Rao Rui-Zhong, Wang Ying-Jian. Progress in the study of physic-optics characteristics of atmospheric aerosols. Acta Physica Sinica, 2008, 57(11): 7396-7407. doi: 10.7498/aps.57.7396
    [18] Wang Hai-Yan, Liu Ri-Ping, Ma Ming-Zhen, Gao Ming, Yao Yu-Shu, Wang Wen-Kui. Solidification of FeSi2 alloy under high pressure. Acta Physica Sinica, 2004, 53(7): 2378-2383. doi: 10.7498/aps.53.2378
    [19] Huang Wei-Dong, Lin Xin, Li Tao, Wang Lin-Lin, Y. Inatomi. A time-dependent interface stability during directional solidification of a single phase alloy(Ⅱ)Comparison with experimental results. Acta Physica Sinica, 2004, 53(11): 3978-3983. doi: 10.7498/aps.53.3978
    [20] Zhang Lin, Wang Shao-Qing, Ye Heng-Qiang. Molecular dynamics study of the structure changes in a high-angle Cu grain boundary by heating and quenching. Acta Physica Sinica, 2004, 53(8): 2497-2502. doi: 10.7498/aps.53.2497
Metrics
  • Abstract views:  8498
  • PDF Downloads:  148
  • Cited By: 0
Publishing process
  • Received Date:  03 September 2018
  • Accepted Date:  13 November 2018
  • Published Online:  05 January 2019

/

返回文章
返回
Baidu
map