-
采用摩擦氧浓度实验方法, 结合原位观察、扫描电镜、能谱仪和X-射线衍射分析, 系统研究Ti-V-Cr 阻燃钛合金燃烧产物的微观组织形貌、燃烧反应过程的合金元素分布规律及微观机理. 结果表明: Ti-V-Cr 阻燃钛合金燃烧过程发出闪亮耀眼的白光, 具有典型金属燃烧的火焰特征. 燃烧产物主要有TiO2, V2O5和Cr2O3三种氧化物, 该混合氧化物以分散颗粒和致密连续体存在. 分散颗粒为规则的球形; 致密连续燃烧产物的微观组织具有分区特征, 从合金基体至燃烧表面依次为过渡区、热影响区、熔凝区和燃烧区. 其中, 过渡区存在一些微小的颗粒状凸起, 且有一定方向性; 热影响区中形成大量V基固溶体相和少量的Ti基固溶体相, V基固溶体相上存在Ti的含量远高于基体的针状析出物; 熔凝区中, 大量的Ti基固溶体中存在少量的V基固溶体; 燃烧区主要为Ti, V和Cr的氧化物混合物. 热影响区的V基固溶体相降低了Ti元素向熔凝区的迁移速率, 减慢了燃烧区Ti与O的优先反应; 燃烧区形成的TiO2, V2O5和Cr2O3混合氧化物和熔凝区O在Ti中大量固溶共同终止了O向合金基体的继续扩散, 从而使Ti-V-Cr阻燃钛合金表现出优异的阻燃功能性.Titanium fire in the aero-engine is a typical accident caused by ignition and burning of titanium alloy, which leads to a huge damage. Some articles wrote it as to turn pale at the mention of titanium. Fireproof titanium alloy, a new type of structural titanium alloy with fireproof function, has been developed to prevent titanium from fire hazard and to ensure safe and reliable service of aero-engine. In view of the lack of clear understanding of the microscopic mechanisms found currently for the structural functionality of fireproof titanium alloys, in this work, using frictional ignition technology in oxygen-rich environment (friction oxygen concentration method), associated with in-situ observation, SEM, EDS and XRD analyses, the microstructure characteristics of burning products of Ti-V-Cr fireproof titanium alloys are investigated and the element distribution law associated with microscopic mechanism during combustion reaction process is disclosed. Results show that Ti-V-Cr fireproof titanium alloys produce dazzling white light during combustion, with the typical flame characteristics of metal combustion. The generated products after burning are mainly TiO2, V2O5 and Cr2O3 oxides, in the form of dispersive particles and dense continuous body. The dispersive particles are in regular spheric shape, with a size of 10-50 m; the dense continuous products after burning presents divisional feature. After the combustion lasts 18 s, four distinct zones form from the alloy matrix to the combustion surface and they are in the sequence of transitional zone, heat-affected zone fusion zone, and combustion zone, with sizes of 40-50, 200-210, 60-70, and 18-21 m respectively. Further, some small granular shaped bulges exist in the transitional zone, in some fixed directions; in the heat-affected zone, a large number of V-based solid solution and some Ti-based solid solution form, and the titanium containing V-based solid solution is much higher than the needle-like precipitation phase in the matrix. In the fusion zone, there are some V-based solid solutions in most of Ti-based solid solution; while, the combustion zone mainly contains the mixed oxides of Ti, V, and Cr. The V-based solid solution in the heat-affected zone reduces the diffusion rate of titanium to the fusion zone, slowing the preferential reaction between titanium and oxygen in the combustion zone; while the generated mixed oxides of TiO2, V2O5, Cr2O3, etc. in the combustion zone and the solution of oxygen in titanium in the fusion zone jointly prevent the diffusion of oxygen to the alloy matrix, thus the Ti-V-Cr fireproof titanium alloys can have excellent fireproof functions.
[1] Hочовнaя Н A, Aлексеев Е Б, Изотовa A Ю, Hо-вaк A Б 2012 Tumaн 4 42
[2] Strobridge T R, Moulder J C, Clark A F 1979 Titanium Combustion in Turbine Engines (Springfield: National Technical Information Service) FAA-RD-79-51 p15
[3] Huang X, Cao C X, Ma J M, Wang B, Gao Y 1997 J. Mater. Eng. 8 11 (in Chinese) [黄旭, 曹春晓, 马济民, 王宝, 高扬 1997 材料工程 8 11]
[4] Luo Q S, Li S F, Pei H P 2012 J. Aerospace Power 27 2763 (in Chinese) [罗秋生, 李世峰, 裴会平 2012 航空动力学报 27 2763]
[5] Berczik D M US Patent 5 176 762 [1993-01-05]
[6] Steve T, Craig W 1995 Adv. Mater. Process. 4 23
[7] Anderson V, Manty B 1978 Titanium Alloy Ignition and Combustion (Florida: Pratt & Whitney Aircraft Group) 76083-30 p10
[8] Борисова Е А, Скляров Н М 2007 Авиационные материалы и технологи: Выпуск Горение и пожаробезопасность титановых сплавов (Москва: ВИАМ) p21
[9] Cao C X 2006 International Aviation 8 59 (in Chinese) [曹春晓 2006 国际航空 8 59]
[10] Cao J X, Huang X, Mi G B, Sha A X, Wang B 2014 J. Aeronaut. Mater. 34 92 (in Chinese) [曹京霞, 黄旭, 弭光宝, 沙爱学, 王宝 2014 航空材料学报 34 92]
[11] Huang X, Zhu Z S, Wang H H 2012 Advanced Aeronautical Titanium Alloys and Applications (Beijing: National Defense Industry Press) p276 [黄旭, 朱知寿, 王红红 2012 先进航空钛合金材料与应用 (北京: 国防工业出版社) 第276页]
[12] Zhao Y Q, Zhou L, Deng J 1999 Rare Metal Mater. Eng. 28 77 (in Chinese) [赵永庆, 周廉, 邓炬 1999 稀有金属材料与工程 28 77]
[13] Littman F E, Church F M, Kinderman E M 1961 Journal of the Less-Common Metals 3 367
[14] Merzhanov A G 1975 Aiaa J. 13 209
[15] Khaikin B I, Bloshenko V N, Merzhanov A G 1970 Combustion, Explosion and Shock Waves 6 412
[16] Rozenband V I 2004 Combustion and Flame 137 366
[17] Beloni E, Dreizin E L 2011 Combust. Sci. Tech. 183 823
[18] Shafirovich E, Teoh S K, Varma A 2008 Combustion and Flame 152 262
[19] Брейтер А Л, Мальцев В М, Попов Е И 1977 Физика горения и взрыва 13 558
[20] Болобов В И 2002 Физика горения и взрыва 38 1
[21] Болобов В И, Шнеерсон Я М, Лапин А Ю 2011 Цветные металлы 12 98
[22] Mi G B, Huang X, Cao J X, Wang B, Cao C X China Patent ZL201218003649.0 [2012-09-04] (in Chinese) [弭光宝, 黄旭, 曹京霞, 王宝, 曹春晓 中国专利 ZL201218003649.0 2012-09-04]
[23] Mi G B, Huang X, Cao J X, Cao C X 2014 Acta Metall. Sin. 50 575 (in Chinese) [弭光宝, 黄旭, 曹京霞, 曹春晓 2014 金属学报 50 575]
[24] Mi G B, Cao C X, Huang X, Cao J X, Wang B 2014 J. Aeronaut. Mater. 34 83 (in Chinese) [弭光宝, 曹春晓, 黄旭, 曹京霞, 王宝 2014 航空材料学报 34 83]
[25] Mi G B, Cao C X, Huang X, Cao J X, Wang B, Sui Nan 2016 J. Mater. Eng. 44 1 (in Chinese) [弭光宝, 曹春晓, 黄旭, 曹京霞, 王宝, 隋楠 2016 材料工程 44 1]
[26] Mi G B, Huang X, Cao J X, Cao C X Huang X S 2013 Trans. Nonferrous Met. Soc. China 23 2270
[27] Mi G B, Huang X S, Li P J, Cao J X, Huang X, Cao C X 2012 Trans. Nonferrous Met. Soc. China 22 2409
[28] Yang Z N, Liu Q, Zhu Z Q, Zhang J, Liu Q J 2009 Mater. Sci. Eng. Powder Metall. 14 63 (in Chinese) [杨贞妮, 刘强, 朱忠其, 张瑾, 柳清菊 2009 粉末冶金材料科学与工程 14 63]
[29] Xu L, Tang C Q, Huang Z B 2010 Acta Phys. Chim. Sin. 26 1401 (in Chinese) [徐凌, 唐超群, 黄宗斌 2010 物理化学学报 26 1401]
[30] Chen J, Yan F N, Liang L P, Liu T Y, Geng T 2011 J. Synthetic Crystals 40 758 (in Chinese) [陈俊, 严非男, 梁丽萍, 刘廷禹, 耿滔 2011 人工晶体学报 40 758]
[31] Li S X, Wan R F, Yang S W, Long Y 2011 Progress Report on China Nuclear Sci. Tech. 2 133 (in Chinese) [李顺兴, 万荣发, 杨善武, 龙毅 2011中国核科学技术进展报告 2 133]
[32] Лякишев Н П 1996 Диаграммы состояния двойных метоллических систем (Москва: Машиностроение) p397
[33] Kubaschewski O, Hopkins E B 1962 Oxidation of Metals and Alloys (London: Butterworths) p73
[34] Birks N, Meier G H, Pettit F S 2009 Introduction to the High Temperature Oxidation of Metals (London: Cambridge University Press) p31
[35] Каракозов Э С 1977 Диффузионная сварка титана (Москва: Металлургия) p58
[36] Froes F H, Caplan I 1993 Titanium'92: Science and Technology (Warrendale: TMS) p2819
[37] Popel P S, Calvo-Dahlborg M, Dahlborg U 2007 J. Non-Cryst. Solids 353 3243
[38] Mi G B, Li P J, Huang X, Cao C X 2012 Acta Phys. Sin. 61 186106 (in Chinese) [弭光宝, 李培杰, 黄旭, 曹春晓 2012 61 186106]
[39] Stephen R T 2000 An Introduction to Combustion: Concepts and Application (New York: McGraw-Hill Higher Education) p125
-
[1] Hочовнaя Н A, Aлексеев Е Б, Изотовa A Ю, Hо-вaк A Б 2012 Tumaн 4 42
[2] Strobridge T R, Moulder J C, Clark A F 1979 Titanium Combustion in Turbine Engines (Springfield: National Technical Information Service) FAA-RD-79-51 p15
[3] Huang X, Cao C X, Ma J M, Wang B, Gao Y 1997 J. Mater. Eng. 8 11 (in Chinese) [黄旭, 曹春晓, 马济民, 王宝, 高扬 1997 材料工程 8 11]
[4] Luo Q S, Li S F, Pei H P 2012 J. Aerospace Power 27 2763 (in Chinese) [罗秋生, 李世峰, 裴会平 2012 航空动力学报 27 2763]
[5] Berczik D M US Patent 5 176 762 [1993-01-05]
[6] Steve T, Craig W 1995 Adv. Mater. Process. 4 23
[7] Anderson V, Manty B 1978 Titanium Alloy Ignition and Combustion (Florida: Pratt & Whitney Aircraft Group) 76083-30 p10
[8] Борисова Е А, Скляров Н М 2007 Авиационные материалы и технологи: Выпуск Горение и пожаробезопасность титановых сплавов (Москва: ВИАМ) p21
[9] Cao C X 2006 International Aviation 8 59 (in Chinese) [曹春晓 2006 国际航空 8 59]
[10] Cao J X, Huang X, Mi G B, Sha A X, Wang B 2014 J. Aeronaut. Mater. 34 92 (in Chinese) [曹京霞, 黄旭, 弭光宝, 沙爱学, 王宝 2014 航空材料学报 34 92]
[11] Huang X, Zhu Z S, Wang H H 2012 Advanced Aeronautical Titanium Alloys and Applications (Beijing: National Defense Industry Press) p276 [黄旭, 朱知寿, 王红红 2012 先进航空钛合金材料与应用 (北京: 国防工业出版社) 第276页]
[12] Zhao Y Q, Zhou L, Deng J 1999 Rare Metal Mater. Eng. 28 77 (in Chinese) [赵永庆, 周廉, 邓炬 1999 稀有金属材料与工程 28 77]
[13] Littman F E, Church F M, Kinderman E M 1961 Journal of the Less-Common Metals 3 367
[14] Merzhanov A G 1975 Aiaa J. 13 209
[15] Khaikin B I, Bloshenko V N, Merzhanov A G 1970 Combustion, Explosion and Shock Waves 6 412
[16] Rozenband V I 2004 Combustion and Flame 137 366
[17] Beloni E, Dreizin E L 2011 Combust. Sci. Tech. 183 823
[18] Shafirovich E, Teoh S K, Varma A 2008 Combustion and Flame 152 262
[19] Брейтер А Л, Мальцев В М, Попов Е И 1977 Физика горения и взрыва 13 558
[20] Болобов В И 2002 Физика горения и взрыва 38 1
[21] Болобов В И, Шнеерсон Я М, Лапин А Ю 2011 Цветные металлы 12 98
[22] Mi G B, Huang X, Cao J X, Wang B, Cao C X China Patent ZL201218003649.0 [2012-09-04] (in Chinese) [弭光宝, 黄旭, 曹京霞, 王宝, 曹春晓 中国专利 ZL201218003649.0 2012-09-04]
[23] Mi G B, Huang X, Cao J X, Cao C X 2014 Acta Metall. Sin. 50 575 (in Chinese) [弭光宝, 黄旭, 曹京霞, 曹春晓 2014 金属学报 50 575]
[24] Mi G B, Cao C X, Huang X, Cao J X, Wang B 2014 J. Aeronaut. Mater. 34 83 (in Chinese) [弭光宝, 曹春晓, 黄旭, 曹京霞, 王宝 2014 航空材料学报 34 83]
[25] Mi G B, Cao C X, Huang X, Cao J X, Wang B, Sui Nan 2016 J. Mater. Eng. 44 1 (in Chinese) [弭光宝, 曹春晓, 黄旭, 曹京霞, 王宝, 隋楠 2016 材料工程 44 1]
[26] Mi G B, Huang X, Cao J X, Cao C X Huang X S 2013 Trans. Nonferrous Met. Soc. China 23 2270
[27] Mi G B, Huang X S, Li P J, Cao J X, Huang X, Cao C X 2012 Trans. Nonferrous Met. Soc. China 22 2409
[28] Yang Z N, Liu Q, Zhu Z Q, Zhang J, Liu Q J 2009 Mater. Sci. Eng. Powder Metall. 14 63 (in Chinese) [杨贞妮, 刘强, 朱忠其, 张瑾, 柳清菊 2009 粉末冶金材料科学与工程 14 63]
[29] Xu L, Tang C Q, Huang Z B 2010 Acta Phys. Chim. Sin. 26 1401 (in Chinese) [徐凌, 唐超群, 黄宗斌 2010 物理化学学报 26 1401]
[30] Chen J, Yan F N, Liang L P, Liu T Y, Geng T 2011 J. Synthetic Crystals 40 758 (in Chinese) [陈俊, 严非男, 梁丽萍, 刘廷禹, 耿滔 2011 人工晶体学报 40 758]
[31] Li S X, Wan R F, Yang S W, Long Y 2011 Progress Report on China Nuclear Sci. Tech. 2 133 (in Chinese) [李顺兴, 万荣发, 杨善武, 龙毅 2011中国核科学技术进展报告 2 133]
[32] Лякишев Н П 1996 Диаграммы состояния двойных метоллических систем (Москва: Машиностроение) p397
[33] Kubaschewski O, Hopkins E B 1962 Oxidation of Metals and Alloys (London: Butterworths) p73
[34] Birks N, Meier G H, Pettit F S 2009 Introduction to the High Temperature Oxidation of Metals (London: Cambridge University Press) p31
[35] Каракозов Э С 1977 Диффузионная сварка титана (Москва: Металлургия) p58
[36] Froes F H, Caplan I 1993 Titanium'92: Science and Technology (Warrendale: TMS) p2819
[37] Popel P S, Calvo-Dahlborg M, Dahlborg U 2007 J. Non-Cryst. Solids 353 3243
[38] Mi G B, Li P J, Huang X, Cao C X 2012 Acta Phys. Sin. 61 186106 (in Chinese) [弭光宝, 李培杰, 黄旭, 曹春晓 2012 61 186106]
[39] Stephen R T 2000 An Introduction to Combustion: Concepts and Application (New York: McGraw-Hill Higher Education) p125
计量
- 文章访问数: 7198
- PDF下载量: 167
- 被引次数: 0