Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Influence of source size and spectral bandwidth on the imaging of a zone plate

Lu Zhong-Wei Wang Xiao-Fang

Citation:

Influence of source size and spectral bandwidth on the imaging of a zone plate

Lu Zhong-Wei, Wang Xiao-Fang
科大讯飞翻译 (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Direct X-ray imaging by a Fresnel zone plate (FZP) has achieved a spatial resolution of 10 nm on a synchrotron beamline. It may be used to obtain submicron-resolution X-ray images of laser-plasma sources or fusion targets. However, none of previous imaging experiments with laser-plasma kilo-elelctron-volt X-ray sources shows such a high resolution. In comparison with the FZP imaging on a synchrotron, we consider a case of imaging an extended object with a laser-plasma X-ray source that the illumination monochromaticity is lower and the field of view larger. Our simulations show that the spatial resolution is affected by both the object size and the spectral bandwidth of the source, which can explain the previous experiments. We conclude that by using a 100-zone FZP to image an object with up to 700 μm in size, a spatial resolution better than 1 μm can be realized by using X-rays of several kilo-electron volts and a spectral bandwidth just less than 3%. In this paper, we report a proof-of-principle study in simulation and experiment in an optical range centered at 632.8 nm. The simulation is performed with the same method as that previously used for X-ray imaging but with a 100-zone FZP working in the optical range. Simulations show that with the increase of the object size, the field-of-view contrast is degraded, but the spatial resolution is nearly unchanged. With the increase of the spectral bandwidth for the illumination, both the contrast and the resolution are degraded. In the experiments, different spectral bandwidths are realized by band-pass filters and different object sizes by an adjustable aperture. The experimental results are confirmed to be in agreement with the simulations. These results reveal that given a satisfied spectral bandwidth of laser-plasma X rays, the FZP imaging will be a promising approach to 1 μm or higher resolution X-ray imaging of a 1-mm-size object.
      Corresponding author: Wang Xiao-Fang, wang1@ustc.edu.cn
    [1]

    Lindl J D, Amendt P, Berger R L, Glendinning S G, Glenzer S H, Haan S W, Kauffman R L, Landen O L, Sute L J 2004 Phys. Plasmas 11 339Google Scholar

    [2]

    Fujioka S, Shiraga H, Nishikino M, Shigemori K, Sunahara A, Nakai M, Azechi H, Nishihara K, Yamanaka K 2003 Phys. Plasmas 10 4784Google Scholar

    [3]

    Xu P, Bai Y L, Liu B Y, Ouyang X, Wang B, Yang W Z, Gou Y S, Zhu B L, Qin J J 2012 Appl. Opt. 51 7820Google Scholar

    [4]

    侯立飞, 韦敏习, 袁永腾, 易涛, 詹夏宇, 易荣清, 杨国洪, 刘慎业, 江少恩 2013 强激光与粒子束 25 2313Google Scholar

    Hou L F, Wei M X, Yuan Y T, Yi T, Zhan X Y, Yi R Q, Yang G H, Liu S Y, Jiang S E 2013 High Power Laser Part. Beams 25 2313Google Scholar

    [5]

    Marshall F J, Bennett G R 1999 Rev. Sci. Instrum. 70 617Google Scholar

    [6]

    Aglitskiy Y, Lehecka T, Obenschain S, Bodner S, Pawley C, Gerber K, Sethian J, Brown C M, Seely J, Feldman U, Holland G 1998 Appl. Opt. 37 5253Google Scholar

    [7]

    Koch J A, Aglitskiy Y, Brown C, Cowan T, Freeman R, Hatchett S, Holland G, Key M, MacKinnon A, Seely J, Snavely R, Stephens R 2003 Rev. Sci. Instrum. 74 2130Google Scholar

    [8]

    伊圣振, 穆宝忠, 王新, 蒋励, 朱京涛, 王占山, 方智恒, 王伟, 傅思祖 2012 强激光与粒子束 24 1076Google Scholar

    Yi S Z, Mu B Z, Wang X, Jiang L, Zhu J T, Wang Z S, Fang Z H, Wang W, Fu S Z 2012 High Power Laser Part. Beams 24 1076Google Scholar

    [9]

    Chao W, Kim J, Rekawa S, Fischer P, Anderson E H 2009 Opt. Express 17 17669Google Scholar

    [10]

    Young M 1972 J. Opt. Soc. Am. 62 972Google Scholar

    [11]

    王晓方, 王晶宇 2011 60 025212Google Scholar

    Wang X F, Wang J Y 2011 Acta Phys. Sin. 60 025212Google Scholar

    [12]

    Cauchon G, P-Thomasset M, Sauneuf R, Dhez P, Idir M, Ollivier M, Troussel P, Boutin J Y, Le Breton J P 1998 Rev. Sci. Instrum. 69 3186Google Scholar

    [13]

    Azechi H, Tamari Y 2003 J. Plasma Fusion Res. 79 398Google Scholar

    [14]

    董建军, 曹磊峰, 陈铭, 谢常青, 杜华冰 2008 57 3044Google Scholar

    Dong J J, Cao L F, Chen M, Xie C Q, Du H B 2008 Acta Phys. Sin. 57 3044Google Scholar

    [15]

    陈晓虎, 王晓方, 张巍巍, 汪文慧 2013 62 015208Google Scholar

    Chen X H, Wang X F, Zhang W W, Wang W H 2013 Acta Phys. Sin. 62 015208Google Scholar

    [16]

    张巍巍, 王晓方 2014 强激光与粒子束 26 022003Google Scholar

    Zhang W W, Wang X F 2014 High Power Laser Part. Beams 26 022003Google Scholar

    [17]

    Chen L M, Liu F, Wang W M, Kando M, Mao J Y, Zhang L, Ma J L, Li Y T, Bulanov S V, Tajima T, Kato Y, Sheng Z M, Wei Z Y, Zhang J 2010 Phys. Rev. Lett. 104 215004Google Scholar

    [18]

    Powers N D, Ghebregziabher I, Golovin G, Liu C, Chen S, Banerjee S, Zhang J, Umstadter D P 2013 Nat. Photon. 8 28Google Scholar

    [19]

    郁道银, 谈恒英 1999 工程光学 (北京: 机械工业出版社) 第249−250页

    Yu D Y, Tan H Y 1999 Engineering Optics (Beijing: China Machine Press) pp249−250 (in Chinese)

    [20]

    阿特伍德 D 著(张杰 译) 2003 软X射线与极紫外辐射的原理和应用 (北京: 科学出版社) 第354页

    Attwood D (translated by Zhang J) 2003 Soft X-rays and Extreme Ultraviolet Radiation: Principles and Applications (Beijing: Science Press) p354 (in Chinese)

  • 图 1  FZP成像示意图

    Figure 1.  Schematic diagram for FZP’s imaging.

    图 2  不同光源尺寸下X射线FZP成像的分辨能力随入射光光谱带宽的变化

    Figure 2.  Spatial resolution of X-ray imaging by FZP versus incident light spectral bandwidth under different source sizes.

    图 3  扩展光源模型及成像结果 (a) 扩展光源模型; (b) FZP对扩展光源成的像; (c) 图(b)中像沿虚线y2方向的强度分布; (d) 图(c)中y2 = 0附近的强度分布

    Figure 3.  Extended source model and its imaging results: (a) Extended source model; (b) image of extended source by FZP; (c) intensity distribution along y2 axis in panel (b); (d) intensity distribution near y2 = 0 in panel (c).

    图 4  视场中央分辨能力与像对比度随扩展光源尺寸的变化

    Figure 4.  Spatial resolution in the field-of-view center and image contrast versus the size of extended source.

    图 5  扩展光源在不同光谱带宽下的成像 (a) w = 0.5%; (b) w = 1.6%; (c) w = 8%; (d) w = 12%

    Figure 5.  Images of an extended source with different spectral bandwidth: (a) w = 0.5%; (b) w = 1.6%; (c) w = 8%; (d) w = 12%.

    图 6  视场中央分辨能力与像对比度随光谱带宽的变化

    Figure 6.  Spatial resolution in the field-of-view center and the image contrast versus spectral bandwidth.

    图 7  实验安排示意图

    Figure 7.  Schematic diagram of experiment setup.

    图 8  扩展光源直径为3 mm时不同光谱带宽的成像结果及其沿x2轴方向强度分布 (a) w = 0.5%; (b) w = 1.5%; (c) w = 8%; (d) w = 12%

    Figure 8.  Images of 3 mm-diameter source for different spectral bandwidth, and the corresponding intensity distribution along x2 axis: (a) w = 0.5%; (b) w = 1.5%; (c) w = 8%; (d) w = 12%.

    图 9  视场中央分辨能力与像对比度随光谱带宽变化的实验结果

    Figure 9.  Experimental results for spatial resolution and image contrast in the field-of-view center versus spectral bandwidth.

    图 10  视场中央分辨能力与像对比度随扩展光源尺寸变化的实验结果

    Figure 10.  Experimental results for spatial resolution and image contrast in the field-of-view center versus extended source size.

    Baidu
  • [1]

    Lindl J D, Amendt P, Berger R L, Glendinning S G, Glenzer S H, Haan S W, Kauffman R L, Landen O L, Sute L J 2004 Phys. Plasmas 11 339Google Scholar

    [2]

    Fujioka S, Shiraga H, Nishikino M, Shigemori K, Sunahara A, Nakai M, Azechi H, Nishihara K, Yamanaka K 2003 Phys. Plasmas 10 4784Google Scholar

    [3]

    Xu P, Bai Y L, Liu B Y, Ouyang X, Wang B, Yang W Z, Gou Y S, Zhu B L, Qin J J 2012 Appl. Opt. 51 7820Google Scholar

    [4]

    侯立飞, 韦敏习, 袁永腾, 易涛, 詹夏宇, 易荣清, 杨国洪, 刘慎业, 江少恩 2013 强激光与粒子束 25 2313Google Scholar

    Hou L F, Wei M X, Yuan Y T, Yi T, Zhan X Y, Yi R Q, Yang G H, Liu S Y, Jiang S E 2013 High Power Laser Part. Beams 25 2313Google Scholar

    [5]

    Marshall F J, Bennett G R 1999 Rev. Sci. Instrum. 70 617Google Scholar

    [6]

    Aglitskiy Y, Lehecka T, Obenschain S, Bodner S, Pawley C, Gerber K, Sethian J, Brown C M, Seely J, Feldman U, Holland G 1998 Appl. Opt. 37 5253Google Scholar

    [7]

    Koch J A, Aglitskiy Y, Brown C, Cowan T, Freeman R, Hatchett S, Holland G, Key M, MacKinnon A, Seely J, Snavely R, Stephens R 2003 Rev. Sci. Instrum. 74 2130Google Scholar

    [8]

    伊圣振, 穆宝忠, 王新, 蒋励, 朱京涛, 王占山, 方智恒, 王伟, 傅思祖 2012 强激光与粒子束 24 1076Google Scholar

    Yi S Z, Mu B Z, Wang X, Jiang L, Zhu J T, Wang Z S, Fang Z H, Wang W, Fu S Z 2012 High Power Laser Part. Beams 24 1076Google Scholar

    [9]

    Chao W, Kim J, Rekawa S, Fischer P, Anderson E H 2009 Opt. Express 17 17669Google Scholar

    [10]

    Young M 1972 J. Opt. Soc. Am. 62 972Google Scholar

    [11]

    王晓方, 王晶宇 2011 60 025212Google Scholar

    Wang X F, Wang J Y 2011 Acta Phys. Sin. 60 025212Google Scholar

    [12]

    Cauchon G, P-Thomasset M, Sauneuf R, Dhez P, Idir M, Ollivier M, Troussel P, Boutin J Y, Le Breton J P 1998 Rev. Sci. Instrum. 69 3186Google Scholar

    [13]

    Azechi H, Tamari Y 2003 J. Plasma Fusion Res. 79 398Google Scholar

    [14]

    董建军, 曹磊峰, 陈铭, 谢常青, 杜华冰 2008 57 3044Google Scholar

    Dong J J, Cao L F, Chen M, Xie C Q, Du H B 2008 Acta Phys. Sin. 57 3044Google Scholar

    [15]

    陈晓虎, 王晓方, 张巍巍, 汪文慧 2013 62 015208Google Scholar

    Chen X H, Wang X F, Zhang W W, Wang W H 2013 Acta Phys. Sin. 62 015208Google Scholar

    [16]

    张巍巍, 王晓方 2014 强激光与粒子束 26 022003Google Scholar

    Zhang W W, Wang X F 2014 High Power Laser Part. Beams 26 022003Google Scholar

    [17]

    Chen L M, Liu F, Wang W M, Kando M, Mao J Y, Zhang L, Ma J L, Li Y T, Bulanov S V, Tajima T, Kato Y, Sheng Z M, Wei Z Y, Zhang J 2010 Phys. Rev. Lett. 104 215004Google Scholar

    [18]

    Powers N D, Ghebregziabher I, Golovin G, Liu C, Chen S, Banerjee S, Zhang J, Umstadter D P 2013 Nat. Photon. 8 28Google Scholar

    [19]

    郁道银, 谈恒英 1999 工程光学 (北京: 机械工业出版社) 第249−250页

    Yu D Y, Tan H Y 1999 Engineering Optics (Beijing: China Machine Press) pp249−250 (in Chinese)

    [20]

    阿特伍德 D 著(张杰 译) 2003 软X射线与极紫外辐射的原理和应用 (北京: 科学出版社) 第354页

    Attwood D (translated by Zhang J) 2003 Soft X-rays and Extreme Ultraviolet Radiation: Principles and Applications (Beijing: Science Press) p354 (in Chinese)

Metrics
  • Abstract views:  7928
  • PDF Downloads:  40
  • Cited By: 0
Publishing process
  • Received Date:  26 June 2018
  • Accepted Date:  24 November 2018
  • Available Online:  01 February 2019
  • Published Online:  05 February 2019

/

返回文章
返回
Baidu
map