Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Interface enhanced superconductivity in monolayer FeSe film on oxide substrate

Ding Cui Liu Chong Zhang Qing-Hua Gong Guan-Ming Wang Heng Liu Xiao-Zhi Meng Fan-Qi Yang Hao-Hao Wu Rui Song Can-Li Li Wei He Ke Ma Xu-Cun Gu Lin Wang Li-Li Xue Qi-Kun

Citation:

Interface enhanced superconductivity in monolayer FeSe film on oxide substrate

Ding Cui, Liu Chong, Zhang Qing-Hua, Gong Guan-Ming, Wang Heng, Liu Xiao-Zhi, Meng Fan-Qi, Yang Hao-Hao, Wu Rui, Song Can-Li, Li Wei, He Ke, Ma Xu-Cun, Gu Lin, Wang Li-Li, Xue Qi-Kun
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • We report on the observation of a superconducting gap of about 14-15 meV, significantly enlarged compared with the value of 2.2 meV for bulk FeSe, in monolayer FeSe film interfaced with MgO epitaxial on SrTiO3(001) substrate by using the scanning tunneling microscopy. While the MgO exhibits the same work function as SrTiO3 substrate, the gap magnitude is in coincidence with that of surface K-doped two-unit-cell FeSe film on SrTiO3(001), suggesting that the interface enhanced superconductivity might be attributed to cooperation of interface charge transfer driven by band bending with interface electron-phonon coupling as discovered at FeSe/TiO2 interfaces. On the other hand, the observation of such an enlarged superconducting gap, complementary to our previous transport observation of an onset superconducting transition temperature of 18 K in monolayer FeSe film on a bulk MgO substrate, implies that FeSe/MgO interface is likely to be a new interface high-temperature superconducting system, providing a new platform for investigating the mechanism of interface hightemperature superconductivity.
      Corresponding author: Wang Li-Li, liliwang@mail.tsinghua.edu.cn;qkxue@mail.tsinghua.edu.cn ; Xue Qi-Kun, liliwang@mail.tsinghua.edu.cn;qkxue@mail.tsinghua.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11574174, 11774193, 11790311, 51522212, 51421002, 51672307), the National Basic Research Program of China (Grant Nos. 2015CB921000, 2014CB921002), and the Strategic Priority Research Program of the Chinese Academy of Sciences, China (Grant No. XDB07030200).
    [1]

    Wang Q Y, Li Z, Zhang W H, et al. 2012 Chin. Phys. Lett. 29 037402

    [2]

    Song C L, Wang Y L, Cheng P, et al. 2011 Science 332 1410

    [3]

    Zhang W H, Sun Y, Zhang J S, et al. 2014 Chin. Phys. Lett. 31 017401

    [4]

    Zhang Z, Wang Y H, Song Q, et al. 2015 Sci. Bull. 60 1301

    [5]

    Ge J F, Liu Z L, Liu C, et al. 2015 Nat. Mater. 14 285

    [6]

    Peng R, Xu H C, Tan S Y, et al. 2014 Nat. Commun. 5 5044

    [7]

    Zhou G, Zhang D, Liu C, et al. 2016 Appl. Phys. Lett. 108 202603

    [8]

    Zhang P, Peng X L, Qian T, et al. 2016 Phys. Rev. B 94 104510

    [9]

    Zhang C, Liu Z, Chen Z, et al. 2017 Nat. Commun. 8 14468

    [10]

    Ding H, Lv Y F, Zhao K, et al. 2016 Phys. Rev. Lett. 117 067001

    [11]

    Rebec S N, Jia T, Zhang C, et al. 2017 Phys. Rev. Lett. 118 067002

    [12]

    Wang L, Ma X C, Xue Q K 2016 Supercond. Sci. Technol. 29 123001

    [13]

    Wang L, Xue Q K 2017 AAPPS Bull. 27 4

    [14]

    Maletz J, Zabolotnnyy V B, Evtushinsky D V, et al. 2014 Phys. Rev. B 89 220506(R)

    [15]

    He S, He J, Zhang W, et al. 2013 Nat. Mater. 12 605

    [16]

    Tan S, Zhang Y, Xia M, et al. 2013 Nat. Mater. 12 634

    [17]

    Lee J J, Schmitt F T, Moore R G, et al. 2014 Nature 515 245

    [18]

    Song C L, Zhang H M, Zhong Y, et al. 2016 Phys. Rev. Lett. 116 157001

    [19]

    Guo J, Jin S, Wang G, et al. 2010 Phys. Rev. B 82 180520

    [20]

    Lu X F, Wang N Z, Wu H, et al. 2015 Nat. Mater. 14 325

    [21]

    Shiogai J, Ito Y, Mitsuhashi T, et al. 2015 Nat. Phys. 12 42

    [22]

    Lei B, Cui J H, Xiang Z J, et al. 2016 Phys. Rev. Lett. 116 077002

    [23]

    Hanzawa K, Sato H, Hiramatsu H, et al. 2016 Proc. Natl. Acad. Sci. U.S.A. 113 3986

    [24]

    Zhang S, Guan J, Jia X, et al. 2016 Phys. Rev. B 94 081116

    [25]

    Zhang H, Zhang D, Lu X, et al. 2017 Nat. Commun. 8 214

    [26]

    Tang C, Liu C, Zhou G, et al. 2016 Phys. Rev. B 93 020507

    [27]

    Zhang W H, Liu X, Wen C H, et al. 2016 Nano Lett. 16 1969

    [28]

    Xie Y, Cao H Y, Zhou Y, et al. 2015 Sci. Rep. 5 10011

    [29]

    Wang Y, Linscheid A, Berlijn T, et al. 2016 Phys. Rev. B 93 134513

    [30]

    Li Z X, Wang F, Yao H, et al. 2016 Sci. Bull. 61 925

    [31]

    Lee D H 2018 Ann. Rev. Conden. Matter Phys. 9 261

    [32]

    Chu C W, Deng L Z, Lv B 2015 Physica C 514 290

    [33]

    Kamihara Y, Watanabe T, Hirano M, et al. 2008 J. Am. Chem. Soc. 130 3296

    [34]

    Ren Z, Lu W, Yang J, et al. 2008 Chin. Phys. Lett. 25 2215

    [35]

    Dingle R, Stormer H L, Gossard A C, Wiegmann W 1978 Appl. Phys. Lett. 33 665

    [36]

    Zhou G, Zhang Q, Zheng F, et al. 2018 Sci. Bull. 63 747

    [37]

    Binnig G, Rohrer H 1983 Surf. Sci. 126 236

    [38]

    Lim J Y, Oh J S, Ko B D, et al. 2003 J. Appl. Phys. 94 764

    [39]

    Susaki T, Shigaki N, Matsuzaki K, et al. 2014 Phys. Rev. B 90 035453

    [40]

    Li F, Zhang Q, Tang C, et al. 2016 2D Mater. 3 024002

    [41]

    Choubey P, Berlijn T, Kreisel A, et al. 2014 Phys. Rev. B 90 134520

    [42]

    Liu C, Mao J, Ding H, et al. 2018 Phys. Rev. B 97 024502

    [43]

    Zhang W, Li Z, Li F, et al. 2014 Phys. Rev. B 89 060506

    [44]

    Parlinski K, Łazewski J, Kawazoe Y 2000 J. Phys. Chem. Solids 61 87

    [45]

    Wang Y, Liu Z K, Chen L Q, et al. 2006 J. Appl. Phys. 100 023533

    [46]

    Oshima C, Aizawa T, Souda R, et al. 1990 Solid State Commun. 73 731

    [47]

    Coh S, Lee D H, Louie S G, et al. 2016 Phys. Rev. B 93 245138

    [48]

    Niu F, Meier A L, Wessels B W 2006 J. Vac. Sci. Technol. B 24 2586

  • [1]

    Wang Q Y, Li Z, Zhang W H, et al. 2012 Chin. Phys. Lett. 29 037402

    [2]

    Song C L, Wang Y L, Cheng P, et al. 2011 Science 332 1410

    [3]

    Zhang W H, Sun Y, Zhang J S, et al. 2014 Chin. Phys. Lett. 31 017401

    [4]

    Zhang Z, Wang Y H, Song Q, et al. 2015 Sci. Bull. 60 1301

    [5]

    Ge J F, Liu Z L, Liu C, et al. 2015 Nat. Mater. 14 285

    [6]

    Peng R, Xu H C, Tan S Y, et al. 2014 Nat. Commun. 5 5044

    [7]

    Zhou G, Zhang D, Liu C, et al. 2016 Appl. Phys. Lett. 108 202603

    [8]

    Zhang P, Peng X L, Qian T, et al. 2016 Phys. Rev. B 94 104510

    [9]

    Zhang C, Liu Z, Chen Z, et al. 2017 Nat. Commun. 8 14468

    [10]

    Ding H, Lv Y F, Zhao K, et al. 2016 Phys. Rev. Lett. 117 067001

    [11]

    Rebec S N, Jia T, Zhang C, et al. 2017 Phys. Rev. Lett. 118 067002

    [12]

    Wang L, Ma X C, Xue Q K 2016 Supercond. Sci. Technol. 29 123001

    [13]

    Wang L, Xue Q K 2017 AAPPS Bull. 27 4

    [14]

    Maletz J, Zabolotnnyy V B, Evtushinsky D V, et al. 2014 Phys. Rev. B 89 220506(R)

    [15]

    He S, He J, Zhang W, et al. 2013 Nat. Mater. 12 605

    [16]

    Tan S, Zhang Y, Xia M, et al. 2013 Nat. Mater. 12 634

    [17]

    Lee J J, Schmitt F T, Moore R G, et al. 2014 Nature 515 245

    [18]

    Song C L, Zhang H M, Zhong Y, et al. 2016 Phys. Rev. Lett. 116 157001

    [19]

    Guo J, Jin S, Wang G, et al. 2010 Phys. Rev. B 82 180520

    [20]

    Lu X F, Wang N Z, Wu H, et al. 2015 Nat. Mater. 14 325

    [21]

    Shiogai J, Ito Y, Mitsuhashi T, et al. 2015 Nat. Phys. 12 42

    [22]

    Lei B, Cui J H, Xiang Z J, et al. 2016 Phys. Rev. Lett. 116 077002

    [23]

    Hanzawa K, Sato H, Hiramatsu H, et al. 2016 Proc. Natl. Acad. Sci. U.S.A. 113 3986

    [24]

    Zhang S, Guan J, Jia X, et al. 2016 Phys. Rev. B 94 081116

    [25]

    Zhang H, Zhang D, Lu X, et al. 2017 Nat. Commun. 8 214

    [26]

    Tang C, Liu C, Zhou G, et al. 2016 Phys. Rev. B 93 020507

    [27]

    Zhang W H, Liu X, Wen C H, et al. 2016 Nano Lett. 16 1969

    [28]

    Xie Y, Cao H Y, Zhou Y, et al. 2015 Sci. Rep. 5 10011

    [29]

    Wang Y, Linscheid A, Berlijn T, et al. 2016 Phys. Rev. B 93 134513

    [30]

    Li Z X, Wang F, Yao H, et al. 2016 Sci. Bull. 61 925

    [31]

    Lee D H 2018 Ann. Rev. Conden. Matter Phys. 9 261

    [32]

    Chu C W, Deng L Z, Lv B 2015 Physica C 514 290

    [33]

    Kamihara Y, Watanabe T, Hirano M, et al. 2008 J. Am. Chem. Soc. 130 3296

    [34]

    Ren Z, Lu W, Yang J, et al. 2008 Chin. Phys. Lett. 25 2215

    [35]

    Dingle R, Stormer H L, Gossard A C, Wiegmann W 1978 Appl. Phys. Lett. 33 665

    [36]

    Zhou G, Zhang Q, Zheng F, et al. 2018 Sci. Bull. 63 747

    [37]

    Binnig G, Rohrer H 1983 Surf. Sci. 126 236

    [38]

    Lim J Y, Oh J S, Ko B D, et al. 2003 J. Appl. Phys. 94 764

    [39]

    Susaki T, Shigaki N, Matsuzaki K, et al. 2014 Phys. Rev. B 90 035453

    [40]

    Li F, Zhang Q, Tang C, et al. 2016 2D Mater. 3 024002

    [41]

    Choubey P, Berlijn T, Kreisel A, et al. 2014 Phys. Rev. B 90 134520

    [42]

    Liu C, Mao J, Ding H, et al. 2018 Phys. Rev. B 97 024502

    [43]

    Zhang W, Li Z, Li F, et al. 2014 Phys. Rev. B 89 060506

    [44]

    Parlinski K, Łazewski J, Kawazoe Y 2000 J. Phys. Chem. Solids 61 87

    [45]

    Wang Y, Liu Z K, Chen L Q, et al. 2006 J. Appl. Phys. 100 023533

    [46]

    Oshima C, Aizawa T, Souda R, et al. 1990 Solid State Commun. 73 731

    [47]

    Coh S, Lee D H, Louie S G, et al. 2016 Phys. Rev. B 93 245138

    [48]

    Niu F, Meier A L, Wessels B W 2006 J. Vac. Sci. Technol. B 24 2586

  • [1] Zhu Meng-Long, Yang Jun, Dong Yu-Lan, Zhou Yuan, Shao Yan, Hou Hai-Liang, Chen Zhi-Hui, He Jun. Atomic and electronic structure of monolayer ferroelectric GeS on Cu(111). Acta Physica Sinica, 2024, 73(1): 010701. doi: 10.7498/aps.73.20231246
    [2] Tang Hai-Tao, Mi Zhuang, Wang Wen-Yu, Tang Xiang-Qian, Ye Xia, Shan Xin-Yan, Lu Xing-Hua. Low-noise preamplifier for scanning tunneling microscope. Acta Physica Sinica, 2024, 73(13): 130702. doi: 10.7498/aps.73.20240560
    [3] Yuan Yong-Hao, Xue Qi-Kun, Li Wei. Stripe phase in high-Tc superconductor FeSe/SrTiO3. Acta Physica Sinica, 2022, 71(12): 127304. doi: 10.7498/aps.71.20220118
    [4] Li Yuan, Deng Han-Bin, Wang Cui-Xiang, Li Shuai-Shuai, Liu Li-Min, Zhu Chang-Jiang, Jia Ke, Sun Ying-Kai, Du Xin, Yu Xin, Guan Tong, Wu Rui, Zhang Shu-Yuan, Shi You-Guo, Mao Han-Qing. Surface and electronic structure of antiferromagnetic axion insulator candidate EuIn2As2. Acta Physica Sinica, 2021, 70(18): 186801. doi: 10.7498/aps.70.20210783
    [5] Dai Hao-Guang, Zha Fang-Xing, Chen Ping-Ping. Theoretical explanation of scanning tunneling spectrum of cleaved (110) surface of InGaAs. Acta Physica Sinica, 2021, 70(19): 196801. doi: 10.7498/aps.70.20210419
    [6] Zhang Zhi-Mo, Zhang Wen-Hao, Fu Ying-Shuang. Scanning tunneling microscopy study on two-dimensional topological insulators. Acta Physica Sinica, 2019, 68(22): 226801. doi: 10.7498/aps.68.20191631
    [7] You Si-Fan,  Sun Lu-Ye,  Guo Jing,  Qiu Xiao-Hui,  Jiang Ying. Recent advances in probing surface/interfacial water by scanning probe microscopy. Acta Physica Sinica, 2019, 68(1): 016802. doi: 10.7498/aps.68.20182201
    [8] Zhu Xue-Tao, Guo Jian-Dong. Development of novel high-resolution electron energy loss spectroscopy and related studies on surface excitations. Acta Physica Sinica, 2018, 67(12): 127901. doi: 10.7498/aps.67.20180689
    [9] Gu Qiang-Qiang, Wan Si-Yuan, Yang Huan, Wen Hai-Hu. Studies of scanning tunneling spectroscopy on iron-based superconductors. Acta Physica Sinica, 2018, 67(20): 207401. doi: 10.7498/aps.67.20181818
    [10] Xu Dan, Yin Jun, Sun Hao-Hua, Wang Guan-Yong, Qian Dong, Guan Dan-Dan, Li Yao-Yi, Guo Wan-Lin, Liu Can-Hua, Jia Jin-Feng. Scanning tunneling microscopy study of h-BN thin films grown on Cu foils. Acta Physica Sinica, 2016, 65(11): 116801. doi: 10.7498/aps.65.116801
    [11] Pang Zong-Qiang, Zhang Yue, Rong Zhou, Jiang Bing, Liu Rui-Lan, Tang Chao. Adsorption and dissociation of water on oxygen pre-covered Cu (110) observed with scanning tunneling microscopy. Acta Physica Sinica, 2016, 65(22): 226801. doi: 10.7498/aps.65.226801
    [12] Liu Meng-Xi, Zhang Yan-Feng, Liu Zhong-Fan. Scanning tunneling microscopy study of in-plane graphene-hexagonal boron nitride heterostructures. Acta Physica Sinica, 2015, 64(7): 078101. doi: 10.7498/aps.64.078101
    [13] Feng Wei, Zhao Ai-Di. STM study of single cobalt atoms and clusters adsorbed on Rh (111) and Pd (111). Acta Physica Sinica, 2012, 61(17): 173601. doi: 10.7498/aps.61.173601
    [14] Yang Jing-Jing, Du Wen-Han. Scanning tunnelling microscope investigation of the TiSi2 nano-islands on Sr/Si(100) surface. Acta Physica Sinica, 2011, 60(3): 037301. doi: 10.7498/aps.60.037301
    [15] Huang Ren-Zhong, Liu Liu, Yang Wen-Jing. STM tip-induced atomic motion on the top of film supported by a metal substrate. Acta Physica Sinica, 2011, 60(11): 116803. doi: 10.7498/aps.60.116803
    [16] Wang Qi, Zhao Hua-Bo, Zhang Zhao-Hui. Conductance enhancement phenomenon of graphene ribbons on highly oriented pyrolytic graphite surfaces studied by scanning probe microscopy. Acta Physica Sinica, 2008, 57(5): 3059-3063. doi: 10.7498/aps.57.3059
    [17] Ge Si-Ping, Zhu Xing, Yang Wei-Sheng. The manipulation of Cu subsurface interstitial atoms with scanning tunneling microscope. Acta Physica Sinica, 2005, 54(2): 824-831. doi: 10.7498/aps.54.824
    [18] Chen Yong-Jun, Zhao Ru-Guang, Yang Wei-Sheng. Scanning tunneling microscopy studies of alkane and alkanol adsorbed on graphite. Acta Physica Sinica, 2005, 54(1): 284-290. doi: 10.7498/aps.54.284
    [19] WANG LEI, TANG JING-CHANG, WANG XUE-SEN. SCANNING TUNNELING MICROSCOPY STUDY OF Si GROWTH ON Si3N4/Si SURFACE. Acta Physica Sinica, 2001, 50(3): 517-522. doi: 10.7498/aps.50.517
    [20] WANG HAO, ZHAO XUE-YING, YANG WEI-SHENG. ADSORPTION OF ASPARTIC ACID ON Cu(001) STUDIED BY SCANNING TUNNELING MICROSCOPY. Acta Physica Sinica, 2000, 49(7): 1316-1320. doi: 10.7498/aps.49.1316
Metrics
  • Abstract views:  9710
  • PDF Downloads:  463
  • Cited By: 0
Publishing process
  • Received Date:  10 September 2018
  • Accepted Date:  21 September 2018
  • Published Online:  20 October 2019

/

返回文章
返回
Baidu
map