-
采用密度泛函理论(DFT)广义梯度近似GGA和HSB06方法研究了氢化双层硅烯(silicene)的结构和电子性质, 结果表明: 氢化后的双层硅烯可能存在三种稳定的构型, AA椅型、AB椅型和AA船型, 其中AA椅型和AB椅型结构最为稳定, 氢化后这三种稳定构型材料的性质由零带隙的半金属(semimetal)转变为禁带宽度分别为1.208, 1.437和1.111 eV 的间接带隙的半导体, 采用混合泛函HSB06计算修正得到的带隙分别为1.595, 1.785 和1.592 eV. 进一步分析了在双轴应变下氢化双层硅烯的带隙随应变的关系, 得到应变可以连续的调节材料的带隙宽度, 这些性质有可能应用于未来的纳米电子器件.Using the density functional theory (DFT) with both the generalized gradient approximation (GGA) and HSE06 hybrid functional calculation, we have investigated the structural and electronic properties of hydrogenated bilayer silicene. Results show that the hydrogenated bilayer silicene may have three configurations: AA-chair-like, AB-chair-like and AA-boat-like forms; after hydrogenation the material properties change from zero band gap semimetal into an indirect band gap semiconductor with forbidden band widths of 1.208, 1.437, and 1.111 eV. We have performed a hybrid HSB06 functional calculation and the correction for the band gaps: 1.595, 1.785, and 1.592 eV. Further analysis of the hydrogenated bilayer silicene with a strained band gap, the relationship between strain and the band gap can be continuously adjusted. Possible applications may be found in future nano-electronic devices.
[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666
[2] Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A 2005 Nature 438 97
[3] Zhang Y, Tan Y W, Stormer H L, Kim P 2005 Nature 438 201
[4] Geim A K, Novoselov K S. 2007 Nat. Mater. 6 183
[5] Sofo J O, Chaudhari A S, Barber G D 2007 Phys. Rev. B 75 153401
[6] Nair R R, Ren W, Jalil R, Riaz I, Kravets V G, Britnell L, Blake P, Schedin F, Mayorov A S, Yuan S, Katsnelson M I, Cheng H M, Strupinski W, Bulusheva L G, Okotrub A V, Grigorieva I V, Grigorenko A N, Novoselov K S, Geim A K 2010 Small 6 2877
[7] Li Q Q, Zhang X, Wu J B, Lu Y, Tan P H, Feng Z H, Li J, Wei C, Liu Q B 2014 Acta Phys. Sin. 63 147802 (in Chinese) [厉巧巧, 张昕, 吴江滨, 鲁妍, 谭平恒, 冯志红, 李佳, 蔚翠, 刘庆斌 2014 63 147802]
[8] Gao T H 2014 Acta Phys. Sin. 63 046102 (in Chinese) [高潭华 2014 63 046102]
[9] Wang D, Zhang Z H, Deng X Q, Fan Z Q 2013 Acta Phys. Sin. 62 207101 (in Chinese) [王鼎, 张振华, 邓小清, 范志强 2013 62 207101]
[10] Xu W Y, Huang L, Que Y D, Li E, Zhang H G, Lin X, Wang Y L, Du S X, Gao H J 2014 Chin. Phys. B 23 098101
[11] Yang H, Shen C M, Tian Y, Wang G Q, Lin S X, Zhang Y, Gu C Z, Li J J, Gao H J 2014 Chin. Phys. B 23 096803
[12] Vogt P, Padova P D, Quaresima C, Avila J, Frantzeskakis E, Asensio M C, Resta A, Ealet B, Lay G L 2012 Phys. Rev. Lett. 108 155501
[13] Feng B, Ding, Z J, Meng S, Yao Y, He X, Cheng P, Chen L, Wu K 2012 Nano. Lett. 12 3507
[14] Lalmi B, Oughaddou H, Enriquez H, Kara A, Vizzinif S, Ealeta B, Aufraya B 2010 Appl. Phys. Lett. 97 223109
[15] Aufray B, Kara A, Vizzini S, Oughaddou H, Léandri C, Ealet B, Lay G L 2010 Appl. Phys. Lett. 96 183102
[16] Antoine F, Rainer F, Taisuke O, Kawai H Wang Y, Yamada-Takamura Y 2012 Phys. Rev. Lett. 108 245501
[17] Meng L, Wang Y, Zhang L, Du S, Wu R, Li L, Zhang Yi, Li G, Zhou H, Hofer W A, Gao H J 2013 Nano. Lett. 13 685
[18] Wang R, Wang S F, Wu X Z arXiv:1305.4789v2 [cond-mat.mes-hall][2014-8-25]
[19] Kamal C, Chakrabarti A, Banerjee A, Deb S K 2013 J Phys: Condens. Matter. 25 085508
[20] Houssa M, Pourtois G, Afanas'ev V V, Stesmans A 2010 Appl. Phys. Lett. 97 112106
[21] Houssa M, Scalise E, Sankaran K, Pourtois G Afanas'ev V V, Stesmans A 2011 Appl. Phys. Lett. 98 223107
[22] Quhe R G, Fei R X, Liu Q H, Zheng J X, Li H, Xu C Y, Ni Z Y, Wang Y Y, Yu D P, Gao Z X, Lu J 2012 Sci.Rep. 2 853
[23] Ni Z Y, Liu Q H, Tang K C, Zheng J X, Zhou J, Qin R, Gao Z X, Yu D P, Lu J 2012 Nano. Lett. 12 113
[24] Blöchl P E 1994 Phys. Rev. B 50 17953
[25] Kresse G, Joubert D 1999 Phys. Rev. B 59 1758
[26] Kresse G, Furthmller J 1996 Phys. Rev. B 54 11169
[27] Kresse G, Furthmller J. 1996 Comput. Mater. Sci. 6 15
[28] Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J, Fiolhais C 1992 Phys. Rev. B 46 6671
[29] Monkhorst H J, Pack J D. 1976 Phys. Rev. B 13 5188
[30] Feynman R P 1939 Phys .Rev. 56 340
[31] Zhang P, Li X D, Hu C H, Zhu Z Z 2012 Phys. Lett. A 376 1230
[32] Cheng G, Liu P F, Li Z T 2013 Chin. Phys. B 22 046201
-
[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666
[2] Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A 2005 Nature 438 97
[3] Zhang Y, Tan Y W, Stormer H L, Kim P 2005 Nature 438 201
[4] Geim A K, Novoselov K S. 2007 Nat. Mater. 6 183
[5] Sofo J O, Chaudhari A S, Barber G D 2007 Phys. Rev. B 75 153401
[6] Nair R R, Ren W, Jalil R, Riaz I, Kravets V G, Britnell L, Blake P, Schedin F, Mayorov A S, Yuan S, Katsnelson M I, Cheng H M, Strupinski W, Bulusheva L G, Okotrub A V, Grigorieva I V, Grigorenko A N, Novoselov K S, Geim A K 2010 Small 6 2877
[7] Li Q Q, Zhang X, Wu J B, Lu Y, Tan P H, Feng Z H, Li J, Wei C, Liu Q B 2014 Acta Phys. Sin. 63 147802 (in Chinese) [厉巧巧, 张昕, 吴江滨, 鲁妍, 谭平恒, 冯志红, 李佳, 蔚翠, 刘庆斌 2014 63 147802]
[8] Gao T H 2014 Acta Phys. Sin. 63 046102 (in Chinese) [高潭华 2014 63 046102]
[9] Wang D, Zhang Z H, Deng X Q, Fan Z Q 2013 Acta Phys. Sin. 62 207101 (in Chinese) [王鼎, 张振华, 邓小清, 范志强 2013 62 207101]
[10] Xu W Y, Huang L, Que Y D, Li E, Zhang H G, Lin X, Wang Y L, Du S X, Gao H J 2014 Chin. Phys. B 23 098101
[11] Yang H, Shen C M, Tian Y, Wang G Q, Lin S X, Zhang Y, Gu C Z, Li J J, Gao H J 2014 Chin. Phys. B 23 096803
[12] Vogt P, Padova P D, Quaresima C, Avila J, Frantzeskakis E, Asensio M C, Resta A, Ealet B, Lay G L 2012 Phys. Rev. Lett. 108 155501
[13] Feng B, Ding, Z J, Meng S, Yao Y, He X, Cheng P, Chen L, Wu K 2012 Nano. Lett. 12 3507
[14] Lalmi B, Oughaddou H, Enriquez H, Kara A, Vizzinif S, Ealeta B, Aufraya B 2010 Appl. Phys. Lett. 97 223109
[15] Aufray B, Kara A, Vizzini S, Oughaddou H, Léandri C, Ealet B, Lay G L 2010 Appl. Phys. Lett. 96 183102
[16] Antoine F, Rainer F, Taisuke O, Kawai H Wang Y, Yamada-Takamura Y 2012 Phys. Rev. Lett. 108 245501
[17] Meng L, Wang Y, Zhang L, Du S, Wu R, Li L, Zhang Yi, Li G, Zhou H, Hofer W A, Gao H J 2013 Nano. Lett. 13 685
[18] Wang R, Wang S F, Wu X Z arXiv:1305.4789v2 [cond-mat.mes-hall][2014-8-25]
[19] Kamal C, Chakrabarti A, Banerjee A, Deb S K 2013 J Phys: Condens. Matter. 25 085508
[20] Houssa M, Pourtois G, Afanas'ev V V, Stesmans A 2010 Appl. Phys. Lett. 97 112106
[21] Houssa M, Scalise E, Sankaran K, Pourtois G Afanas'ev V V, Stesmans A 2011 Appl. Phys. Lett. 98 223107
[22] Quhe R G, Fei R X, Liu Q H, Zheng J X, Li H, Xu C Y, Ni Z Y, Wang Y Y, Yu D P, Gao Z X, Lu J 2012 Sci.Rep. 2 853
[23] Ni Z Y, Liu Q H, Tang K C, Zheng J X, Zhou J, Qin R, Gao Z X, Yu D P, Lu J 2012 Nano. Lett. 12 113
[24] Blöchl P E 1994 Phys. Rev. B 50 17953
[25] Kresse G, Joubert D 1999 Phys. Rev. B 59 1758
[26] Kresse G, Furthmller J 1996 Phys. Rev. B 54 11169
[27] Kresse G, Furthmller J. 1996 Comput. Mater. Sci. 6 15
[28] Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J, Fiolhais C 1992 Phys. Rev. B 46 6671
[29] Monkhorst H J, Pack J D. 1976 Phys. Rev. B 13 5188
[30] Feynman R P 1939 Phys .Rev. 56 340
[31] Zhang P, Li X D, Hu C H, Zhu Z Z 2012 Phys. Lett. A 376 1230
[32] Cheng G, Liu P F, Li Z T 2013 Chin. Phys. B 22 046201
计量
- 文章访问数: 7129
- PDF下载量: 318
- 被引次数: 0