搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

表面氢化的双层氮化硼的结构和电子性质

高潭华 吴顺情 张鹏 朱梓忠

引用本文:
Citation:

表面氢化的双层氮化硼的结构和电子性质

高潭华, 吴顺情, 张鹏, 朱梓忠

Structural and electronic properties of hydrogenated bilayer boron nitride

Gao Tan-Hua, Wu Shun-Qing, Zhang Peng, Zhu Zi-Zhong
PDF
导出引用
  • 采用第一性原理方法研究了表面氢化的双层氮化硼的结构和电子性质. 考虑了表面氢化的双层BN可能存在的六种主要构型,计算结果表明:AB-BN和AA-BN两种构型最为稳定. 进一步分析了氢化后的双层BN最稳定构型的能带和电子性质. AB-BN和AA-BN两种构型的原子薄片均为直接带隙半导体,GGA计算的带隙值分别为1.47 eV和1.32 eV. 因为GGA通常严重低估带隙值,采用hybrid泛函计算得到带隙值分别为2.52 eV 和2.34 eV. 在最稳定的AB-BN和AA-BN两种构型中,B-N 键呈现共价键,而B-H和N-H 则具有明显的离子键的特点. 在双轴应变下氢化双层BN原子薄片可以被连续地调节带隙,当晶格常数被压缩约8%时,原子薄片由半导体性转变为金属性.
    The structural and electronic properties of hydrogenated bilayer boron nitride (BN) were studied by employing the first-principles calculations. Six major polymorphic structures of hydrogenated bilayer BN are considered. Calculated results show that, among them, the AB-BN and AA-BN structures are the most stable ones. The analysis on the energy bands and electronic properties of the two most stable structures are then performed. Structures of AB-BN and AA-BN are both semiconducting with direct band gaps, and the gaps are 1.47 eV and 1.32 eV, respectively, calculated using the GGA method. Since GGA usually severely underestimates the band gap, the hybrid density functional calculations are then conducted, which suggests that the band gaps are 2.52 eV and 2.34 eV for AB-BN and AA-BN structures, respectively. In the most stable structures of AB-BN and AA-BN, B-N bonds show mainly covalent characters, while B-H and N-H bonds exhibit clear ionic characteristics. Moreover, the band gap of hydrogenated bilayer BN atomic sheet can be continuously modulated by biaxial strains. When the lattice constant is compressed by around 8%, the electronic character of the atomic sheet changes from semiconducting into metallic.
    • 基金项目: 国家自然科学基金(批准号:11004165,21233004)和福建省教育厅科技项目(批准号:JK2013054)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11004165, 21233004), and the Department of Education of Fujian Province (Grant No. JK2013054).
    [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [2]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A 2005 Nature 438 197

    [3]

    Zhang Y, Tan Y W, Stormer H L, Kim P 2005 Nature 438 201

    [4]

    Geim A K, Novoselov K S 2007 Nat. Mater. 6 183

    [5]

    Chen Y L, Feng X B, Hou D D 2013 Acta Phys. Sin. 62 187301 (in Chinese) [陈英良, 冯小波, 侯德东 2013 62 187301]

    [6]

    Sofo J O, Chaudhari A S, Barber G D 2007 Phys. Rev. B 75 153401

    [7]

    Sun J P, Miao Y M, Cao X C 2013 Acta Phys. Sin. 62 036301 (in Chinese) [孙建平, 缪应蒙, 曹相春 2013 62 036301]

    [8]

    Nair R R, Ren W, Jalil R, Riaz I, Kravets V G, Britnell L, Blake P, Schedin F, Mayorov A S, Yuan S, Katsnelson M I, Cheng H M, Strupinski W, Bulusheva L G, Okotrub A V, Grigorieva I V, Grigorenko A N, Novoselov K S, Geim A K 2010 Small 6 2877

    [9]

    Zhang Y, Hu C H, Wen Y H, Wu S Q, Zhu Z Z 2011 New J. Phys. 13 063047

    [10]

    Xu X G, Xu G Ji, Cao J C, Zhang C 2011 Chin. Phys. B 20 027201

    [11]

    Lin X, Wang H L, Pan H, Xu H Z 2011 Chin. Phys. B 20 047302

    [12]

    Han W Q, Wu L, Zhu Y, Watanabe K, Taniguchi T 2008 Appl. Phys. Lett. 93 223103

    [13]

    Meyer J C Chuvilin A, Algara-Siller G Biskupek J Kaiser U 2009 Nano Lett. 9 2683

    [14]

    Zhi C, Bando Y Tang C, Kuwahara H, Golberg D 2009 Adv. Mater. 21 2889

    [15]

    Zhou J, Wang Q, Sun Q, Jena P 2010 Phys. Rev. B 81 0854421

    [16]

    Li J, Gui G, Sun L Z, Zhong J X 2011 Acta Phys. Sin. 59 8820 (in Chinese) [李金, 桂贵, 孙立忠, 钟建新 2010 59 8820]

    [17]

    Xie J F Cao J X 2013 Acta Phys. Sin. 62 017302 (in Chinese) [谢剑锋, 曹觉先 2013 62 017302]

    [18]

    Blöchl P E 1994 Phys. Rev. B 50 17953

    [19]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [20]

    Kresse G, Furthmller J 1996 Phys. Rev. B 54 11169

    [21]

    Kresse G Furthmller J 1996 Comput. Mater. Sci. 6 15

    [22]

    Perdew J P, Chevary J A, Vosko S H Jackson K A, Pederson M R, Singh D J, Fiolhais C 1992 Phys. Rev. B 46 6671

    [23]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [24]

    Feynman R P 1939 Phys. Rev. 56 340

  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [2]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A 2005 Nature 438 197

    [3]

    Zhang Y, Tan Y W, Stormer H L, Kim P 2005 Nature 438 201

    [4]

    Geim A K, Novoselov K S 2007 Nat. Mater. 6 183

    [5]

    Chen Y L, Feng X B, Hou D D 2013 Acta Phys. Sin. 62 187301 (in Chinese) [陈英良, 冯小波, 侯德东 2013 62 187301]

    [6]

    Sofo J O, Chaudhari A S, Barber G D 2007 Phys. Rev. B 75 153401

    [7]

    Sun J P, Miao Y M, Cao X C 2013 Acta Phys. Sin. 62 036301 (in Chinese) [孙建平, 缪应蒙, 曹相春 2013 62 036301]

    [8]

    Nair R R, Ren W, Jalil R, Riaz I, Kravets V G, Britnell L, Blake P, Schedin F, Mayorov A S, Yuan S, Katsnelson M I, Cheng H M, Strupinski W, Bulusheva L G, Okotrub A V, Grigorieva I V, Grigorenko A N, Novoselov K S, Geim A K 2010 Small 6 2877

    [9]

    Zhang Y, Hu C H, Wen Y H, Wu S Q, Zhu Z Z 2011 New J. Phys. 13 063047

    [10]

    Xu X G, Xu G Ji, Cao J C, Zhang C 2011 Chin. Phys. B 20 027201

    [11]

    Lin X, Wang H L, Pan H, Xu H Z 2011 Chin. Phys. B 20 047302

    [12]

    Han W Q, Wu L, Zhu Y, Watanabe K, Taniguchi T 2008 Appl. Phys. Lett. 93 223103

    [13]

    Meyer J C Chuvilin A, Algara-Siller G Biskupek J Kaiser U 2009 Nano Lett. 9 2683

    [14]

    Zhi C, Bando Y Tang C, Kuwahara H, Golberg D 2009 Adv. Mater. 21 2889

    [15]

    Zhou J, Wang Q, Sun Q, Jena P 2010 Phys. Rev. B 81 0854421

    [16]

    Li J, Gui G, Sun L Z, Zhong J X 2011 Acta Phys. Sin. 59 8820 (in Chinese) [李金, 桂贵, 孙立忠, 钟建新 2010 59 8820]

    [17]

    Xie J F Cao J X 2013 Acta Phys. Sin. 62 017302 (in Chinese) [谢剑锋, 曹觉先 2013 62 017302]

    [18]

    Blöchl P E 1994 Phys. Rev. B 50 17953

    [19]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [20]

    Kresse G, Furthmller J 1996 Phys. Rev. B 54 11169

    [21]

    Kresse G Furthmller J 1996 Comput. Mater. Sci. 6 15

    [22]

    Perdew J P, Chevary J A, Vosko S H Jackson K A, Pederson M R, Singh D J, Fiolhais C 1992 Phys. Rev. B 46 6671

    [23]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [24]

    Feynman R P 1939 Phys. Rev. 56 340

  • [1] 吴洪芬, 冯盼君, 张烁, 刘大鹏, 高淼, 闫循旺. 铁原子吸附联苯烯单层电子结构的第一性原理.  , 2022, 71(3): 036801. doi: 10.7498/aps.71.20211631
    [2] 吴洪芬, 冯盼君, 张烁, 刘大鹏, 高淼, 闫循旺. 铁原子吸附联苯烯单层电子结构的第一性原理研究.  , 2021, (): . doi: 10.7498/aps.70.20211631
    [3] 徐贤达, 赵磊, 孙伟峰. 石墨烯纳米网电导特性的能带机理:第一原理计算.  , 2020, 69(4): 047101. doi: 10.7498/aps.69.20190657
    [4] 李琳, 孙宇璇, 孙伟峰. 层状氧化钼的电子结构、磁和光学性质第一原理研究.  , 2019, 68(5): 057101. doi: 10.7498/aps.68.20181962
    [5] 王丹, 邹娟, 唐黎明. 氢化二维过渡金属硫化物的稳定性和电子特性: 第一性原理研究.  , 2019, 68(3): 037102. doi: 10.7498/aps.68.20181597
    [6] 池明赫, 赵磊. 石墨烯纳米片磁有序和自旋逻辑器件第一原理研究.  , 2018, 67(21): 217101. doi: 10.7498/aps.67.20181297
    [7] 刘琪, 管鹏飞. La65X35(X=Ni,Al)非晶合金原子结构的第一性原理研究.  , 2018, 67(17): 178101. doi: 10.7498/aps.67.20180992
    [8] 刘慧英, 张秀钦, 方艺梅, 朱梓忠. T型石墨烯及其衍生物的结构与电子特性.  , 2017, 66(16): 166101. doi: 10.7498/aps.66.166101
    [9] 高潭华. 表面氢化双层硅烯的结构和电子性质.  , 2015, 64(7): 076801. doi: 10.7498/aps.64.076801
    [10] 王如志, 徐利春, 严辉, 香山正宪. 含扭转晶界位错Al金属拉伸强度第一性原理预测.  , 2012, 61(2): 026801. doi: 10.7498/aps.61.026801
    [11] 李荣, 罗小玲, 梁国明, 付文升. 稀土元素掺杂对VH2解氢性能的影响.  , 2012, 61(9): 093601. doi: 10.7498/aps.61.093601
    [12] 高潭华, 刘慧英, 张鹏, 吴顺情, 杨勇, 朱梓忠. Al掺杂的尖晶石型LiMn2O4的结构和电子性质.  , 2012, 61(18): 187306. doi: 10.7498/aps.61.187306
    [13] 李姝丽, 张建民. Ni原子链填充碳纳米管的能量、电子结构和磁性的第一性原理计算.  , 2011, 60(7): 078801. doi: 10.7498/aps.60.078801
    [14] 季正华, 曾祥华, 岑洁萍, 谭明秋. ZnSe相变、电子结构的第一性原理计算.  , 2010, 59(2): 1219-1224. doi: 10.7498/aps.59.1219
    [15] 汪志刚, 张杨, 文玉华, 朱梓忠. ZnO原子链的结构稳定性和电子性质的第一性原理研究.  , 2010, 59(3): 2051-2056. doi: 10.7498/aps.59.2051
    [16] 王彦, 沈波, Dierre Benjamin, Sekiguchi Takashi, 许福军. 氢化作用对低能电子束辐照下GaN发光演变的影响.  , 2009, 58(11): 7864-7868. doi: 10.7498/aps.58.7864
    [17] 王松有, 段国玉, 邱建红, 贾 瑜, 陈良尧. 闪锌矿结构的PtN:一种不稳定的过渡金属氮化物.  , 2006, 55(4): 1979-1982. doi: 10.7498/aps.55.1979
    [18] 孟 醒, 徐晓光, 刘 伟, 孙 源, 陈 岗. 钙钛矿型HoNiO3中电荷歧化的第一原理研究.  , 2004, 53(11): 3873-3876. doi: 10.7498/aps.53.3873
    [19] 陈丽娟, 侯柱锋, 朱梓忠, 杨 勇. LiAl中空位形成能的第一原理计算.  , 2003, 52(9): 2229-2234. doi: 10.7498/aps.52.2229
    [20] 刘慧英, 侯柱锋, 朱梓忠, 黄美纯, 杨 勇. InSb的锂嵌入形成能第一原理计算.  , 2003, 52(7): 1732-1736. doi: 10.7498/aps.52.1732
计量
  • 文章访问数:  8704
  • PDF下载量:  1044
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-09-04
  • 修回日期:  2013-09-29
  • 刊出日期:  2014-01-05

/

返回文章
返回
Baidu
map