[1] |
Li Chao-Gang, Wang Mao-Sheng, Fang Quan, Peng Xue-Cheng, Huang Wan-Xia. Applications of representation transformation and secular perturbation theory to coupled Duffing equations. Acta Physica Sinica,
2021, 70(2): 024601.
doi: 10.7498/aps.70.20201057
|
[2] |
Zhu Cun-Yuan, Li Chao-Gang, Fang Quan, Wang Mao-Sheng, Peng Xue-Cheng, Huang Wan-Xia. The spring oscillator model degenerated into the coupled-mode theory by using secular perturbation theory. Acta Physica Sinica,
2020, 69(7): 074501.
doi: 10.7498/aps.69.20191505
|
[3] |
Ding Qi, Hao Ai-Jing. Differential invariants for CDG equation and coupled KDV-MKDV equations. Acta Physica Sinica,
2014, 63(11): 110503.
doi: 10.7498/aps.63.110503
|
[4] |
Shi Yu-Ren, Zhang Juan, Yang Hong-Juan, Duan Wen-Shan. Single soliton of double kinks of the mKdV equation and its stability. Acta Physica Sinica,
2010, 59(11): 7564-7569.
doi: 10.7498/aps.59.7564
|
[5] |
Lü Da-Zhao, Cui Yan-Ying, Liu Chang-He, Zhang Yan. Abundant interaction solutions of the mKdV-sine-Gordon equation. Acta Physica Sinica,
2010, 59(10): 6793-6798.
doi: 10.7498/aps.59.6793
|
[6] |
Pan Liu-Xian, Yu Hui-You, Yan Jia-Ren. Time-dependent perturbation theory of KdV soliton. Acta Physica Sinica,
2008, 57(3): 1316-1320.
doi: 10.7498/aps.57.1316
|
[7] |
Pan Jun-Ting, Gong Lun-Xun. Jacobi elliptic function solutions to the coupled KdV-mKdV equation. Acta Physica Sinica,
2007, 56(10): 5585-5590.
doi: 10.7498/aps.56.5585
|
[8] |
Pan Liu-Xian, Zuo Wei-Ming, Yan Jia-Ren. The theory of the perturbation for Landau-Ginzburg-Higgs equation. Acta Physica Sinica,
2005, 54(1): 1-5.
doi: 10.7498/aps.54.1
|
[9] |
Zhang Yu-Feng, Yan Qing-You. A type of expanding integrable system for NLS-mKdV hierarchy. Acta Physica Sinica,
2003, 52(9): 2109-2113.
doi: 10.7498/aps.52.2109
|
[10] |
Li De-Sheng, Zhang Hong-Qing. Improved tanh-function method and the new exact solutions for the general variab le coefficient KdV equation and MKdV equation. Acta Physica Sinica,
2003, 52(7): 1569-1573.
doi: 10.7498/aps.52.1569
|
[11] |
Zhang Yu-Feng, Yan Qing-You, Zhang Hong-Qing. A family of S-mKdV hierarchy of equations and its expanding integrable models. Acta Physica Sinica,
2003, 52(1): 5-11.
doi: 10.7498/aps.52.5
|
[12] |
Tang Jia-Shi, Liu Zhu-Yong, Li Xue-Ping. The quasi-wavelet solutions of MKdV equations. Acta Physica Sinica,
2003, 52(3): 522-525.
doi: 10.7498/aps.52.522
|
[13] |
Liu Tian-Gui, Yan Jia-Ren, Pan Liu-Xian. . Acta Physica Sinica,
2002, 51(1): 6-9.
doi: 10.7498/aps.51.6
|
[14] |
LI HUA-BING, HUANG PING-HUA, LIU MU-REN, KONG LING-JIANG. SIMULATION OF THE MKDV EQUATION WITH LATTICE BOLTZMANN METHOD. Acta Physica Sinica,
2001, 50(5): 837-840.
doi: 10.7498/aps.50.837
|
[15] |
LOU SEN-YUE, RUAN HANG-YU. CONSERVATION LAWS OF THE VARIABLE COEFFICIENT KdV AND MKdV EQUATIONS. Acta Physica Sinica,
1992, 41(2): 182-187.
doi: 10.7498/aps.41.182
|
[16] |
WEN GEN-WANG. THE STEEPEST DESCENT PERTURBATION THEORY FOR THE EXCITED STATE OF A QUANTUM SYSTEM. Acta Physica Sinica,
1991, 40(9): 1388-1395.
doi: 10.7498/aps.40.1388
|
[17] |
WEN GEN-WANG. DEGENERATE GROUND STATE STEEPEST DESCENT PERTURBATION THEORY. Acta Physica Sinica,
1988, 37(12): 1981-1986.
doi: 10.7498/aps.37.1981
|
[18] |
ZHENG ZHAO-BO. AN ALTERNATE PROOF OF THE INFINITE ORDER PERTURBATION THEORY BY MATRIX PARTITION. Acta Physica Sinica,
1981, 30(7): 866-877.
doi: 10.7498/aps.30.866
|
[19] |
CHENG LU. THE PERTURBATION THEORY FOR THE FIRST-ORDER APPROXIMATION OF THE DIFFRACTION PROBLEMS. Acta Physica Sinica,
1966, 22(2): 223-232.
doi: 10.7498/aps.22.223
|
[20] |
CHEN SHI-KANG. PERTURBATION THEORY OF TRANSVERSE TRANSPORT PROCESS IN STRONG MAGNETIC FIELD. Acta Physica Sinica,
1964, 20(7): 579-595.
doi: 10.7498/aps.20.579
|