搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铥原子收敛于4f13(2F7/2o)6s(7/2,1/2)4o和4f13(2F7/2o)6s(7/2,1/2)3o偶宇称里德伯系列能级的电子关联效应

张典承 张颍 李晓康 贾凤东 李若虹 钟志萍

引用本文:
Citation:

铥原子收敛于4f13(2F7/2o)6s(7/2,1/2)4o和4f13(2F7/2o)6s(7/2,1/2)3o偶宇称里德伯系列能级的电子关联效应

张典承, 张颍, 李晓康, 贾凤东, 李若虹, 钟志萍

Electron correlation effects in even Rydberg series converging to 4f13(2F7/2o)6s(7/2, 1/2)4o and 4f13(2F7/2o)6s(7/2, 1/2)3o of thulium atom

Zhang Dian-Cheng, Zhang Ying, Li Xiao-Kang, Jia Feng-Dong, R. Li, Zhong Zhi-Ping
PDF
导出引用
  • 本文在多通道量子亏损理论框架下,利用相对论多通道理论,计算了铥原子收敛于4f13(2F7/2o)6s(7/2,1/2)4o和4f13(2F7/2o)6s(7/2,1/2)3o的三个偶宇称里德伯系列.通过将计算结果与美国国家标准与技术研究院数据进行比较,展示了两种类型的电子关联效应:1)里德伯系列之间的相互作用,导致里德伯系列的能级出现整体偏移;2)一个孤立的干扰态镶嵌在一个里德伯系列中,破坏了该里德伯系列能级的规则性.
    In the frame work of multi-channel quantum defect theory (MQDT), the energy levels of three even Rydberg series 4f13(2F7/2o)6s(7/2, 1/2)4onp3/2, 4f13(2F7/2o)6s(7/2, 1/2)3onp3/2 and 4f13(2F7/2o)6s(7/2, 1/2)3onp1/2 converging to 4f13(2F7/2o)6s(7/2, 1/2)4o or 4f13(2F7/2o)6s(7/2, 1/2)3o of thulium atom are calculated by relativistic multi-channel theory. Compared with the experimental data from National Institute of Standards and Technology (NIST), the theoretical result shows two different types of electron-correlation effects: 1)the interaction between two Rydberg series results in energy shifts for these Rydberg series; 2)an isolated perturbed state is embedded in the energy range of a Rydberg series and interacts with the whole series, and breaks the regularity of the Rydberg series, and quantum defects show a large jump around the perturbed state. More specifically, by comparing the present calculated quantum defects with the experimental data, we reassign two Rydberg series: 1)4f13(2F7/2o)6s(7/2, 1/2)4onp3/2 Rydberg series from NIST is reassigned as 4f13(2F7/2o)6s(7/2, 1/2)4onf5/2, J=(5/2)+, 4f13(2F7/2o)6s(7/2, 1/2)4onf5/2, J=(7/2)+ and/or 4f13(2F7/2o)6s(7/2, 1/2)4onp1/2, J=(9/2)+ Rydberg series, and the difference between experimental and calculated quantum defects is generally better than 0.1; 2)4f13(2F7/2o)6s(7/2, 1/2)3onp3/2 Rydberg series from NIST is reassigned as 4f13(2F7/2o)6s(7/2, 1/2)3onf7/2, J=(5/2)+, 4f13(2F7/2o)6s(7/2, 1/2)3onf7/2, J=(7/2)+ and/or 4f13(2F7/2o)6s(7/2, 1/2)3onf5/2, 7/2, J=(9/2)+ Rydberg series, and the difference between experimental and calculated quantum defects is generally better than 0.05. As for the 4f13(2F7/2o)6s(7/2, 1/2)3onp1/2 Rydberg series from NIST, we find there is a perturbed state at about 49900 cm-1, and assign the perturbed state as 4f13(3F4)6 d5/26s2, J=7/2 and the total angular momentum for the Rydberg series is J=7/2.
      通信作者: 钟志萍, zpzhong@ucas.ac.cn
    • 基金项目: 国家重点研发计划(批准号:2017YFA0402300,2017YFA0304900)、国家自然科学基金(批准号:11604334)和中国科学院先导项目(批准号:XDPB08-3)资助的课题.
      Corresponding author: Zhong Zhi-Ping, zpzhong@ucas.ac.cn
    • Funds: Project Supported by the National Key Research and Development Program of China (Grant Nos. 2017YFA0402300, 2017YFA0304900), the National Natural Science Foundation of China (Grant No. 11604334), and the Key Research Program of the Chinese Academy of Sciences (Grant No. XDPB08-3).
    [1]

    Fano U 1961 Phys. Rev. 124 1866

    [2]

    Bolle K J, Imamoglu A, Harris S E 1991 Phys. Rev. Lett. 66 2593

    [3]

    Fleischhauer M, Imamoglu A, Marangos J P 2005 Rev. Mod. Phys. 77 633

    [4]

    Ott C, Kaldun A, Raith P, Meyer K, Laux M, Evers J, Keitel C H, Greene C H, Pfeifer T 2013 Science 340 716

    [5]

    Limonov M F, Rybin M V, Poddubny A N, Kivshar Y S 2017 Nat. Photon. 11 543

    [6]

    Jia F D, Zhong Z P, Sun W, Xue P, Xu X Y 2009 Phys. Rev. A 79 032505

    [7]

    L S F, Li R, Jia F D, Li X K, Lassen J, Zhong Z P 2017 Chin. Phys. Lett. 34 073101

    [8]

    Li R, Lassen J, Zhong Z P, Jia F D, Mostamand M, Li X K, Reich B B, Teigelhfer A, Yan H 2017 Phys. Rev. A 95 052501

    [9]

    Lee C M, Lu K T 1973 Phys. Rev. A 8 1241

    [10]

    Fano U 1970 Phys. Rev. A 2 353

    [11]

    Seaton M J 1983 Rep. Prog. Phys. 46 167

    [12]

    Greene C, Fano U, Strinati G 1979 Phys. Rev. A 19 1485

    [13]

    Lee C M, Johnson W R 1980 Phys. Scr. A 21 409

    [14]

    Li J M 1983 Acta Phys. Sin. 32 84 (in Chinese) [李家明 1983 32 84]

    [15]

    Li J M 1980 Acta Phys. Sin. 29 419 (in Chinese) [李家明 1980 29 419]

    [16]

    Yan J, Zhang P H, Tong X M, Li J M 1996 Acta Phys. Sin. 45 1978 (in Chinese) [颜君, 张培鸿, 仝晓民, 李家明 1996 45 1978]

    [17]

    Xia D, Li J M 2001 Chin. Phys. Lett. 18 1334

    [18]

    Zou Y, Tong X M, Li J M 1995 Acta Phys. Sin. 44 50 (in Chinese) [邹宇, 仝晓民, 李家明 1995 44 50]

    [19]

    Huang W, Zou Y, Tong X M, Li J M 1995 Phys. Rev. A 52 2770

    [20]

    Li J M, Wu Y J, Pratt R H 1989 Phys. Rev. A 40 3036

    [21]

    Xia D, Zhang S Z, Peng Y L, Li J M 2003 Chin. Phys. Lett. 20 56

    [22]

    Lee C M 1974 Phys. Rev. A 10 584

    [23]

    NIST Atomic Spectra Database (Ver. 5.5.6), Kramida A, Ralchenko Y, Reader J, NIST ASD Team https://physics.nist.gov/asd [2018-9-9]

    [24]

    Martin W C, Zalubas R, Hagan L 1978 Nat. Stand. Ref. Data Ser. 60 422

    [25]

    Sossah A M, Zhou H L, Manson S T 2008 Phys. Rev. A 78 053405

    [26]

    Shi Y L, Dong C Z 2009 Acta Phys. Sin. 58 2350 (in Chinese) [师应龙, 董晨钟 2009 58 2350]

    [27]

    Libermann D A, Comer D T, Waber J T 1971 Comput. Phys. Commun. 2 107

  • [1]

    Fano U 1961 Phys. Rev. 124 1866

    [2]

    Bolle K J, Imamoglu A, Harris S E 1991 Phys. Rev. Lett. 66 2593

    [3]

    Fleischhauer M, Imamoglu A, Marangos J P 2005 Rev. Mod. Phys. 77 633

    [4]

    Ott C, Kaldun A, Raith P, Meyer K, Laux M, Evers J, Keitel C H, Greene C H, Pfeifer T 2013 Science 340 716

    [5]

    Limonov M F, Rybin M V, Poddubny A N, Kivshar Y S 2017 Nat. Photon. 11 543

    [6]

    Jia F D, Zhong Z P, Sun W, Xue P, Xu X Y 2009 Phys. Rev. A 79 032505

    [7]

    L S F, Li R, Jia F D, Li X K, Lassen J, Zhong Z P 2017 Chin. Phys. Lett. 34 073101

    [8]

    Li R, Lassen J, Zhong Z P, Jia F D, Mostamand M, Li X K, Reich B B, Teigelhfer A, Yan H 2017 Phys. Rev. A 95 052501

    [9]

    Lee C M, Lu K T 1973 Phys. Rev. A 8 1241

    [10]

    Fano U 1970 Phys. Rev. A 2 353

    [11]

    Seaton M J 1983 Rep. Prog. Phys. 46 167

    [12]

    Greene C, Fano U, Strinati G 1979 Phys. Rev. A 19 1485

    [13]

    Lee C M, Johnson W R 1980 Phys. Scr. A 21 409

    [14]

    Li J M 1983 Acta Phys. Sin. 32 84 (in Chinese) [李家明 1983 32 84]

    [15]

    Li J M 1980 Acta Phys. Sin. 29 419 (in Chinese) [李家明 1980 29 419]

    [16]

    Yan J, Zhang P H, Tong X M, Li J M 1996 Acta Phys. Sin. 45 1978 (in Chinese) [颜君, 张培鸿, 仝晓民, 李家明 1996 45 1978]

    [17]

    Xia D, Li J M 2001 Chin. Phys. Lett. 18 1334

    [18]

    Zou Y, Tong X M, Li J M 1995 Acta Phys. Sin. 44 50 (in Chinese) [邹宇, 仝晓民, 李家明 1995 44 50]

    [19]

    Huang W, Zou Y, Tong X M, Li J M 1995 Phys. Rev. A 52 2770

    [20]

    Li J M, Wu Y J, Pratt R H 1989 Phys. Rev. A 40 3036

    [21]

    Xia D, Zhang S Z, Peng Y L, Li J M 2003 Chin. Phys. Lett. 20 56

    [22]

    Lee C M 1974 Phys. Rev. A 10 584

    [23]

    NIST Atomic Spectra Database (Ver. 5.5.6), Kramida A, Ralchenko Y, Reader J, NIST ASD Team https://physics.nist.gov/asd [2018-9-9]

    [24]

    Martin W C, Zalubas R, Hagan L 1978 Nat. Stand. Ref. Data Ser. 60 422

    [25]

    Sossah A M, Zhou H L, Manson S T 2008 Phys. Rev. A 78 053405

    [26]

    Shi Y L, Dong C Z 2009 Acta Phys. Sin. 58 2350 (in Chinese) [师应龙, 董晨钟 2009 58 2350]

    [27]

    Libermann D A, Comer D T, Waber J T 1971 Comput. Phys. Commun. 2 107

  • [1] 白健男, 韩嵩, 陈建弟, 韩海燕, 严冬. 超级里德伯原子间的稳态关联集体激发与量子纠缠.  , 2023, 72(12): 124202. doi: 10.7498/aps.72.20222030
    [2] 刘硕, 白建东, 王杰英, 何军, 王军民. 铯原子nP3/2 (n = 70—94)里德伯态的紫外单光子激发及量子亏损测量.  , 2019, 68(7): 073201. doi: 10.7498/aps.68.20182283
    [3] 李晓康, 贾凤东, 余方晨, 李明阳, 薛平, 许祥源, 钟志萍. 一价镧离子高n里德伯态.  , 2019, 68(4): 043201. doi: 10.7498/aps.68.20181980
    [4] 李心梅, 阮亚平, 钟志萍. 碱金属Li,Na,K,Rb,Cs,Fr的ns2S1/2,np2P1/2,3/2, nd2D3/2,5/2 和nf2F5/2,7/2 里德伯能级理论研究.  , 2012, 61(2): 023104. doi: 10.7498/aps.61.023104
    [5] 李洪云, 刘伟, 林圣路. 强磁场中Rydberg NO分子的回归谱研究.  , 2010, 59(10): 6824-6831. doi: 10.7498/aps.59.6824
    [6] 张新峰, 范士林, 贾凤东, 薛平, 许祥源, 钟志萍. 钪原子的自电离里德伯能级3d4s(1D2)nf2 D3/2,3d4s(1D2)nf2 F5/2和3d4s(1D2)np2 D3/2<.  , 2010, 59(9): 6036-6043. doi: 10.7498/aps.59.6036
    [7] 高嵩, 徐学友, 周慧, 张延惠, 林圣路. 电场中里德伯原子动力学性质的半经典理论研究.  , 2009, 58(3): 1473-1479. doi: 10.7498/aps.58.1473
    [8] 吴晓丽, 苟秉聪, 刘义东. 氦原子单激发和双激发态里德伯系列的相对论能量计算.  , 2004, 53(1): 48-53. doi: 10.7498/aps.53.48
    [9] 曾贵华, 余玮, 沈百飞, 徐至展. 高阶相对论谐波辐射的理论研究.  , 1996, 45(9): 1487-1491. doi: 10.7498/aps.45.1487
    [10] 颜君, 张培鸿, 仝晓民, 李家明. 碱金属nf里德伯态精细结构反常物理机制的理论研究.  , 1996, 45(12): 1978-1985. doi: 10.7498/aps.45.1978
    [11] 董晨钟, 邹宇, 王建国, 李家明. 双电子复合过程的相对论理论研究 通道的变化特性.  , 1995, 44(11): 1712-1718. doi: 10.7498/aps.44.1712
    [12] 仝晓民, 李家明, 邹宇. 原子结构的相对论性多通道理论——原子能级及物理参数μ-a,U-(ja)的计算.  , 1995, 44(1): 50-56. doi: 10.7498/aps.44.50
    [13] 孙飚, 李家明. 以Si为联合原子的分子系列双原子分子的里德伯能级结构.  , 1992, 41(6): 873-880. doi: 10.7498/aps.41.873
    [14] 杨焕旺, 刘磊, 李家明. 以Ne原子为联合原子的系列分子里德伯能级结构.  , 1992, 41(1): 10-17. doi: 10.7498/aps.41.10
    [15] 杨力. 一价铝离子能级结构的多通道量子亏损理论分析.  , 1991, 40(12): 1897-1903. doi: 10.7498/aps.40.1897
    [16] 梁良, 王永昌, 刘学文. GaII能谱的多通道量子数亏损理论(MQDT)分析.  , 1990, 39(6): 11-18. doi: 10.7498/aps.39.11
    [17] 杨力, 赵伊君, 张志杰. Al Ⅱ1P10序列能级结构的多通道量子亏损理论分析.  , 1988, 37(8): 1341-1344. doi: 10.7498/aps.37.1341
    [18] 李家明. 双电子复合逆过程的多通道理论.  , 1983, 32(1): 84-91. doi: 10.7498/aps.32.84
    [19] 李钰, 西门纪业. 多级聚焦-偏转复合系统的相对论象差理论.  , 1982, 31(5): 604-614. doi: 10.7498/aps.31.604
    [20] 赵钧. AlI原子2D吸收谱的多通道量子数亏损理论分析.  , 1982, 31(12): 28-36. doi: 10.7498/aps.31.28
计量
  • 文章访问数:  5786
  • PDF下载量:  87
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-24
  • 修回日期:  2018-06-18
  • 刊出日期:  2019-09-20

/

返回文章
返回
Baidu
map