Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

A new magnetic field system for 3He polarization

Wang Wen-Zhao Hu Bi-Tao Zheng Hao Tu Xiao-Qing Gao Peng-Lin Yan Song Guo Wen-Chuan Yan Hai-Yang

Citation:

A new magnetic field system for 3He polarization

Wang Wen-Zhao, Hu Bi-Tao, Zheng Hao, Tu Xiao-Qing, Gao Peng-Lin, Yan Song, Guo Wen-Chuan, Yan Hai-Yang
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The nuclear spin-polarized 3He gas has been in depth studied and widely used in various scientific experiments. The polarized 3He gas can be used as a polarized neutron target to study the reaction of neutrons with charged particles or photon beams. On the other hand, spin polarized 3He gas is a good probe for detecting the new interactions in the supernormal model, and has many other applications as follows:the spin-dependent interaction can be studied quantitatively by measuring the NMR frequency shift but the spin-dependent interaction can also be studied by measuring the relaxation time of polarized 3He gas; the polarized 3He gas can be applied to magnetometers and magnetic resonance imaging (MRI); the highly polarized 3He gas can be used as a neutron spin filter for neutron polarization and polarization analysis because of the high correlation between the absorption cross section of the neutron in polarized 3He nucleus and the spin orientation. At present, the three major domestic sources of neutron, CMRR, CARR, and CSNS, are used to study the neutron polarization and polarization analysis techniques based on spin polarized 3He gas. The longitudinal (or spin-lattice) relaxation time (i.e., T1) of 3He is a key parameter that limits the polarizability of 3He gas. In order to reduce the effect of magnetic field gradient on the longitudinal relaxation time of polarized 3He gas, large-sized Helmholtz coils are usually constructed to provide the main magnetic field where the uniformity in the magnetic field central region reaches 10-4 cm-1. To obtain enough magnetic field uniformity, some magnetic field systems even exceed 1.5 m in size. However, it is expected to have a small magnetic field configuration from the view of practicality and convenience. For the common size (3He cells, Merritt coil and Saddle coil can effectively reduce the size of the magnetic field apparatus. However, for electron scattering experiments of 3He cells, the chamber length can be 40 cm. The system length exceeds 1 m even by using the Merritt coil. In this work, a new six-coil system for 3He polarization is obtained. Within the coils, the magnetic field gradient satisfies the requirement that √|▽Bx|2+|▽By|2/B0 -4 cm-1 in more than 30% area, which is better than all the existing coils used in polarized 3He experiments and can be applied to the future 3He instruments. For other experiments that require magnetic field to have a large uniform area, the new six-coil system is also a good option.
      Corresponding author: Hu Bi-Tao, hubt@lzu.edu.cn;hyan@caep.cn ; Yan Hai-Yang, hubt@lzu.edu.cn;hyan@caep.cn
    • Funds: Project supported by the National Key Program for Research and Development of China (Grant No. 2016YFA0401500) and the National Natural Science Foundation of China (Grant Nos. 11675152, 91636103, 11575073).
    [1]

    Laskaris G 2014 Phys. Rev. C 89 59

    [2]

    Tullney K, Allmendinger F, Burghoff M, Heil W, Karpuk S, Kilian W, Knappe-Gruneberg S, Muller M, Schmidt U, Schnabel A, Seifert F, Sobolev Y, Trahms L 2013 Phys. Rev. Lett. 111 100801

    [3]

    Yan H Y, Sun G A, Gong J, Pang B B, Wang Y, Yang Y W, Zhang J, Zhang Y 2014 Eur. Phys. J. C 74 1

    [4]

    Chu P H, Dennis A, Fu C B, Gao H Y, Khaiwada R, Laskaris G, Li K, Smith E, Snow W M, Yan H Y, Zhang W 2013 Phys. Rev. D 87 011105

    [5]

    Yan H Y, Sun G A, Peng S M, Zhang Y, Fu C B, Guo H, Liu B Q 2015 Phys. Rev. Lett. 115 182001

    [6]

    Limes M E, Sheng D, Romalis M V 2018 Phys. Rev. Lett. 120 033401

    [7]

    Nikiel A, Blmler P, Heil W, Hehn M, Karpuk S, Maul A, Otten E, Schreiber L M, Terekhov M 2014 Eur. Phys. J. D 68 1

    [8]

    Couch M J, Blasiak B, Tomanek B, Ouriadov A V, Fox M S, Dowhos K M, Albert M S 2015 Mol. Imaging Biol. 17 149

    [9]

    Jiang C Y, Tong X, Brown D R, Lee W T, Ambaye H, Craig J W, Crowa L, Culbertson H, Goyette R, Graves-Brook M K, Hagen M E, Kadron B, Lauter V, McCollum L W, Robertson J L, Winn B, Vandegrifta A E 2013 Phys. Procedia 42 191

    [10]

    Zheng W, Gao H Y, Liu J G, Zhang Y, Ye Q, Swank C 2011 Phys. Rev. A 84 053411

    [11]

    Guigue M, Pignol G, Golub R, Petukhov K A 2014 Phys. Rev. A 90 013407

    [12]

    Maxwell J D, Epstein C S, Milner R G 2015 Nucl. Instrum. Methods Phys. Res. Sect. A 777 194

    [13]

    Babcock E D 2005 Ph. D. Dissertation (Madison:University of Wisconsin-Madison)

    [14]

    Lu R C 2009 Ph. D. Dissertation (Lanzhou:Institute of Modern Physics) (in Chinese)[卢荣春 2009 博士学位论文 (兰州:中国近代物理研究所)]

    [15]

    Zhang Y 2011 Ph. D. Dissertation (Lanzhou:Lanzhou University) (in Chinese)[张毅 2011 博士学位论文 (兰州:兰州大学)]

    [16]

    Ding S Q 1985 CN Patent 85102592 (in Chinese)[丁守谦 1985 中国专利 CN85102592]

    [17]

    Merrittt R, Purcell C, Stroink G 1983 Rev. Sci. Instrum. 54 879

    [18]

    Gottardi G, Mesirca P, Agostini C, Remondini D, Bersani F 2003 Bioelectromagnetics 24 125

    [19]

    Gentile T R, Nacher P J, Saam B, Walker T G 2017 Rev. Mod. Phys. 89 045004

    [20]

    Mciver J W, Erwin R, Chen W C, Gentile T R 2009 Rev. Sci. Instrum. 80 168

  • [1]

    Laskaris G 2014 Phys. Rev. C 89 59

    [2]

    Tullney K, Allmendinger F, Burghoff M, Heil W, Karpuk S, Kilian W, Knappe-Gruneberg S, Muller M, Schmidt U, Schnabel A, Seifert F, Sobolev Y, Trahms L 2013 Phys. Rev. Lett. 111 100801

    [3]

    Yan H Y, Sun G A, Gong J, Pang B B, Wang Y, Yang Y W, Zhang J, Zhang Y 2014 Eur. Phys. J. C 74 1

    [4]

    Chu P H, Dennis A, Fu C B, Gao H Y, Khaiwada R, Laskaris G, Li K, Smith E, Snow W M, Yan H Y, Zhang W 2013 Phys. Rev. D 87 011105

    [5]

    Yan H Y, Sun G A, Peng S M, Zhang Y, Fu C B, Guo H, Liu B Q 2015 Phys. Rev. Lett. 115 182001

    [6]

    Limes M E, Sheng D, Romalis M V 2018 Phys. Rev. Lett. 120 033401

    [7]

    Nikiel A, Blmler P, Heil W, Hehn M, Karpuk S, Maul A, Otten E, Schreiber L M, Terekhov M 2014 Eur. Phys. J. D 68 1

    [8]

    Couch M J, Blasiak B, Tomanek B, Ouriadov A V, Fox M S, Dowhos K M, Albert M S 2015 Mol. Imaging Biol. 17 149

    [9]

    Jiang C Y, Tong X, Brown D R, Lee W T, Ambaye H, Craig J W, Crowa L, Culbertson H, Goyette R, Graves-Brook M K, Hagen M E, Kadron B, Lauter V, McCollum L W, Robertson J L, Winn B, Vandegrifta A E 2013 Phys. Procedia 42 191

    [10]

    Zheng W, Gao H Y, Liu J G, Zhang Y, Ye Q, Swank C 2011 Phys. Rev. A 84 053411

    [11]

    Guigue M, Pignol G, Golub R, Petukhov K A 2014 Phys. Rev. A 90 013407

    [12]

    Maxwell J D, Epstein C S, Milner R G 2015 Nucl. Instrum. Methods Phys. Res. Sect. A 777 194

    [13]

    Babcock E D 2005 Ph. D. Dissertation (Madison:University of Wisconsin-Madison)

    [14]

    Lu R C 2009 Ph. D. Dissertation (Lanzhou:Institute of Modern Physics) (in Chinese)[卢荣春 2009 博士学位论文 (兰州:中国近代物理研究所)]

    [15]

    Zhang Y 2011 Ph. D. Dissertation (Lanzhou:Lanzhou University) (in Chinese)[张毅 2011 博士学位论文 (兰州:兰州大学)]

    [16]

    Ding S Q 1985 CN Patent 85102592 (in Chinese)[丁守谦 1985 中国专利 CN85102592]

    [17]

    Merrittt R, Purcell C, Stroink G 1983 Rev. Sci. Instrum. 54 879

    [18]

    Gottardi G, Mesirca P, Agostini C, Remondini D, Bersani F 2003 Bioelectromagnetics 24 125

    [19]

    Gentile T R, Nacher P J, Saam B, Walker T G 2017 Rev. Mod. Phys. 89 045004

    [20]

    Mciver J W, Erwin R, Chen W C, Gentile T R 2009 Rev. Sci. Instrum. 80 168

  • [1] Zhao Xing-Yu, Wang Li-Na, Han Hong-Bo, Shang Jie-Ying. Comparative investigations on α relaxation and conductivity of probe ions in a series of small molecular liquids. Acta Physica Sinica, 2024, 73(14): 147701. doi: 10.7498/aps.73.20240478
    [2] Yang Sanxiang, Zhao Yide, Dai Peng, Li Jianpeng, Geng Hai, Yang JunTai, Jia Yanhui, GuoNing. Two-dimensional simulation of the influence of plume magnetic field on the performance of hall thrusters. Acta Physica Sinica, 2024, 73(24): . doi: 10.7498/aps.73.20241331
    [3] Chen Hao-Peng, Nie Yong-Jie, Li Guo-Chang, Wei Yan-Hui, Hu Hao, Lu Guang-Hao, Li Sheng-Tao, Zhu Yuan-Wei. Polarization characteristics of polymer dispersed liquid crystal films and their effects on electro-optical properties. Acta Physica Sinica, 2023, 72(17): 177701. doi: 10.7498/aps.72.20230664
    [4] Wang Peng, Pan Feng-Chun, Guo Jing-Jing, Li Ting-Ting, Wang Xu-Ming. Theoretical studies on the drive-response relationship for opinion particles in a bistable potential field. Acta Physica Sinica, 2020, 69(6): 060501. doi: 10.7498/aps.69.20191516
    [5] Wang Yang, Zhao Ling-Ling. Viscoelastic relaxation time of the monoatomic Lennard-Jones system. Acta Physica Sinica, 2020, 69(12): 123101. doi: 10.7498/aps.69.20200138
    [6] Li Ji, Liu Wu-Ming. Ground state of spin-orbit coupled rotating two-component Bose-Einstein condensate in gradient magnetic field. Acta Physica Sinica, 2018, 67(11): 110302. doi: 10.7498/aps.67.20180539
    [7] Ren Xiao-Xia, Shen Feng-Juan, Lin Xin-You, Zheng Rui-Lun. Variation of thermal expansion at low temperature and phonon relaxation time in graphene with temperature. Acta Physica Sinica, 2017, 66(22): 224701. doi: 10.7498/aps.66.224701
    [8] Zhang Ke-Sheng, Zhu Ming, Tang Wen-Yong, Ou Wei-Hua, Jiang Xue-Qin. Algorithm for reconstructing vibrational relaxation times in excitable gases by two-frequency acoustic measurements. Acta Physica Sinica, 2016, 65(13): 134302. doi: 10.7498/aps.65.134302
    [9] Jia Ya-Qiong, Wang Shu, Zhu Ming, Zhang Ke-Sheng, Yuan Fei-Ge. The analytic model between effective heat capacity and relaxation time in gas acoustic relaxation process. Acta Physica Sinica, 2012, 61(9): 095101. doi: 10.7498/aps.61.095101
    [10] Wang Bing, Wu Xiu-Qing. Relaxation time for an optical bistable system subjected to cross-correlated color noises. Acta Physica Sinica, 2011, 60(7): 074214. doi: 10.7498/aps.60.074214
    [11] E Peng, Duan Ping, Jiang Bin-Hao, Liu Hui, Wei Li-Qiu, Xu Dian-Guo. On the effect of magnetic field gradient on the discharge characteristics of Hall thrusters. Acta Physica Sinica, 2010, 59(10): 7182-7190. doi: 10.7498/aps.59.7182
    [12] Hu De-Zhi. Numerical calculation of the electron-phonon coupling relaxation time in pulse laser ablation. Acta Physica Sinica, 2009, 58(2): 1077-1082. doi: 10.7498/aps.58.1077
    [13] Zhao Jian-Yu, Sun Xi-Ming, Jia Lei. An improvement of relaxation time of gas-kinetic traffic model. Acta Physica Sinica, 2006, 55(5): 2306-2312. doi: 10.7498/aps.55.2306
    [14] Wang He, Li Geng-Ying. Combination of inversion and fitting as an effective method for the analysis of NMR relaxation data. Acta Physica Sinica, 2005, 54(3): 1431-1436. doi: 10.7498/aps.54.1431
    [15] MA YAN-YUN, CHANG WEN-WEI, YIN YAN, YUE ZONG-WU, CAO LI-HUA, LIU DA-QING. A COLLISION MODEL IN PLASMA PARTICLE SIMULATIONS. Acta Physica Sinica, 2000, 49(8): 1513-1519. doi: 10.7498/aps.49.1513
    [16] YANG JI-CHUN, WU QIN-YI, YE CHAO-HUI. DIRECT MEASUREMENT OF MULTIPLE QUANTUM RELAXATION TIME IN AX SYSTEM. Acta Physica Sinica, 1986, 35(1): 74-81. doi: 10.7498/aps.35.74
    [17] QIU PEI-HUA, B. KOPAINSKT. ABSORPTION AND RELAXATION TIME OF THE CHINESE DYES D1 AND D2. Acta Physica Sinica, 1982, 31(2): 243-246. doi: 10.7498/aps.31.243
    [18] LIU DA-JAHN, CHEN GIAO-FONG. SPIN-LATTICE RELAXATION AND CONCENTRATION EFFECTS OF Cr3+ IN RUBY. Acta Physica Sinica, 1966, 22(2): 183-187. doi: 10.7498/aps.22.183
    [19] . Acta Physica Sinica, 1966, 22(1): 125-126. doi: 10.7498/aps.22.125
    [20] SZE SHIH-YUAN, CHANG KOU-HWAN. ON THE RELAXATION TIME OF ISOTHERMAL ORDERING PROCESS IN AuCu3. Acta Physica Sinica, 1956, 12(1): 80-82. doi: 10.7498/aps.12.80
Metrics
  • Abstract views:  6665
  • PDF Downloads:  105
  • Cited By: 0
Publishing process
  • Received Date:  30 March 2018
  • Accepted Date:  25 May 2018
  • Published Online:  05 September 2018

/

返回文章
返回
Baidu
map